PySpark学习笔记3-案例练习

搜索引擎日志分析

需求1 用户搜索关键词分析

需求2 用户和关键词组合分析

需求3 热门搜索时间段分析

首先对于数据可以用jieba库进行分词处理

python 复制代码
from pyspark import SparkConf,SparkContext
from defs import context_jieba,filter_words,append_words
from oprator import add
from pyspark.storagelevel import storagelevel

if __name__ == '__main__':
conf = SparkConf().setAppName('sougou').setMaster("local[*]")
#读取文件
sc = SparkContext('../sougou.txt')
split_rdd = file_rdd.map(lambda line:line.split('\t'))
#送入缓存
split_rdd.persist(StorageLevel.DISK_ONLY)
#需求1
context_rdd = split_rdd.map(lambda x : x[2])
# 对取出来的第二列搜索内容做分词操作
word_rdd = context_rdd.flatMap(context_jieba)
filter_rdd = word_rdd.filter(filter_words)
final_words_rdd = filter_rdd.amp(append_words)
#统计关键词的个数
result1 = final_words_rdd.reduceByKey(lambda a,b: a + b).sortBy(lambda x : x[1],ascending=False,numPartitions=1).take(5)
print('需求一结果',result1)
#需求2
user_content_rdd = split_rdd.map(lambda x:(x[1],x[2]))
user_word_rdd = uder_content_tdd.flatMap(extract_user_and_word)
user_word_with_one_rddd = user_word_rdd.map(lambda x:(x:1))
result2 = user_word_with_one_rddd.reduceByKey(lambda a,b:a+b).sortBy(lambda x:x[1],ascending=False,numpPartitions=1).take(5)
print(result2)
#需求3
time_rdd = split_rdd.map(lambda x:x[0])
hour_with_one_rdd  = time_rdd.map(lambda x:(x.split(":")[0],1))
result3 = hpour_with_one_rdd.reduceByKey(add).sortBy(lambda x:x[1],ascending=False,numPartitions=1).collect()
print(result3)

将代码提交到集群中运行

powershell 复制代码
/spark/bin/spark-submit --master yarn --py-files def.py /root/main.py
相关推荐
谷歌开发者2 小时前
Web 开发指向标 | Chrome 开发者工具学习资源 (一)
前端·chrome·学习
本郡主是喵4 小时前
用 TypeScript 进行 Truffle 测试
学习·区块链
武文斌775 小时前
复习总结最终版:单片机
linux·单片机·嵌入式硬件·学习
sealaugh326 小时前
AI(学习笔记第十二课) 使用langsmith的agents
人工智能·笔记·学习
QZ_orz_freedom6 小时前
学习笔记--事务管理
笔记·学习
程序员大雄学编程7 小时前
「机器学习笔记14」集成学习全面解析:从Bagging到Boosting的Python实战指南
笔记·机器学习·集成学习
im_AMBER7 小时前
Web 开发 30
前端·笔记·后端·学习·web
试试勇气8 小时前
Linux学习笔记(八)--环境变量与进程地址空间
linux·笔记·学习
蒙奇D索大8 小时前
【数据结构】考研数据结构核心考点:平衡二叉树(AVL树)详解——平衡因子与4大旋转操作入门指南
数据结构·笔记·学习·考研·改行学it
andwhataboutit?8 小时前
Docker Compose学习
学习·docker·容器