缩放 对内外参的影响

当你对图像进行同比例缩小时,图像的内参需要相应地变化,但外参通常保持不变。

相机内参

相机内参(内参矩阵)描述了相机的固有属性,包括焦距和主点(光轴与图像平面的交点)的坐标。

当你对图像进行同比例缩小时,焦距和主点坐标也需要根据缩放比例进行相应缩小。例如,如果图像缩小了一半,焦距和主点坐标也应缩小为原来的一半。

相机外参

相机外参描述了相机的姿态(位置和方向),通常表示为一个旋转矩阵和一个平移向量。

相机外参描述了相机在世界坐标系中的位置和方向,与图像的缩放无关。因此,相机外参在图像缩放时保持不变。

python 复制代码
import numpy as np

def adjust_intrinsics(K, scale):
    """
    根据缩放比例调整相机内参。

    :param K: 原始内参矩阵
    :param scale: 缩放比例
    :return: 调整后的内参矩阵
    """
    K_new = K.copy()
    K_new[0, 0] *= scale  # 调整 f_x
    K_new[1, 1] *= scale  # 调整 f_y
    K_new[0, 2] *= scale  # 调整 c_x
    K_new[1, 2] *= scale  # 调整 c_y
    return K_new

# 示例内参矩阵
K = np.array([
    [1200, 0, 640],
    [0, 1200, 480],
    [0, 0, 1]
])

# 缩放比例
scale = 0.5

# 调整后的内参矩阵
K_new = adjust_intrinsics(K, scale)

print("原始内参矩阵:\n", K)
print("调整后的内参矩阵:\n", K_new)
相关推荐
Niuguangshuo1 天前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火1 天前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887821 天前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
星爷AG I1 天前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi
ZCXZ12385296a2 天前
【计算机视觉】基于YOLO13-C3k2-ConvAttn的电动汽车充电桩车位线自动检测与定位系统
人工智能·计算机视觉
qq_526099132 天前
高分辨率图像采集卡:超清画质采集,满足高精度视觉需求
图像处理·计算机视觉·自动化
浮生如梦_2 天前
C# 窗体工厂类 - 简单工厂模式演示案例
计算机视觉·c#·视觉检测·简单工厂模式
民乐团扒谱机2 天前
【微实验】Zhang-Suen 快速并行细化算法与MATLAB实现
人工智能·学习·算法·计算机视觉·数学建模·matlab
张人玉2 天前
VisionPro Blob、条码识别、OCR 核心学习笔记
人工智能·机器学习·计算机视觉·vsionpro
Coovally AI模型快速验证2 天前
“看起来像世界”≠“真世界”!WorldLens全维度解构自动驾驶世界模型
人工智能·机器学习·计算机视觉·目标跟踪·自动驾驶·ocr