理解Spark中运行程序时数据被分区的过程

在Spark中,数据分区是指将数据集分割成多个小的子集,即分区,以便在集群的多个节点上并行处理,从而提高处理效率。以下通过一个具体例子来理解:

例子背景

假设要分析一个包含100万条销售记录的数据集,每条记录包含商品名称、销售数量、销售金额等字段,存储在分布式文件系统中。

分区过程

  • Spark读取数据时,会根据配置和数据存储情况自动进行分区,比如设置了分区数为10。
  • 数据按一定规则(如哈希值)被分配到10个分区中,每个分区包含大约10万条记录。

并行处理

  • 分区完成后,Spark将这些分区分配到集群的不同节点上并行处理。
  • 例如集群有5个节点,每个节点可处理2个分区。节点同时对各自分区内的数据进行操作,如计算每个商品的销售总额。

结果整合

  • 各节点完成分区内数据处理后,将结果返回给Driver程序。
  • Driver程序汇总这些结果,得到最终的所有商品销售总额统计信息。

通过数据分区与并行处理,Spark能充分利用集群资源,大大提高数据处理效率,比在单台机器上处理100万条数据快很多。

设置的分区数变化的情况

在Spark中,设置的分区数变化会直接影响数据读取的分区过程及后续处理,以下以之前的100万条销售记录数据集为例说明:

分区数减少

假设将分区数从10减少到5。Spark读取数据时,会把原来准备划分到10个分区的数据重新分配到5个分区中。比如按顺序每20万条记录划分为一个新分区,这样每个分区的数据量大约变为原来的2倍,为20万条记录。在集群处理时,若还是5个节点,每个节点就只需处理1个分区,由于每个分区数据量增多,单个节点处理时间可能会延长,但整体的任务调度和协调开销可能会减少。

分区数增加

若将分区数从10增加到20。Spark会更细粒度地划分数据,比如每5万条记录划分为一个分区。在集群处理时,若节点数不变,平均每个节点要处理4个分区,数据并行处理的程度更高,可充分利用集群资源,但过多的分区也会增加任务调度和管理的开销,如可能需要更多时间来协调各分区任务的启动、监控和结果合并等。

相关推荐
贝多芬也爱敲代码4 小时前
如何减小ES和mysql的同步时间差
大数据·mysql·elasticsearch
异次元的星星5 小时前
智慧新零售时代:施易德系统平衡技术与人力,赋能门店运营
大数据·零售
深思慎考6 小时前
ElasticSearch与Kibana 入门指南(7.x版本)
大数据·elasticsearch·jenkins
银行数字化转型导师坚鹏7 小时前
如何设计优秀的企业微信私域运营实战培训方案
大数据·python·企业微信
悠闲蜗牛�8 小时前
人工智能时代下的全栈开发:整合AI、大数据与云原生的实践策略
大数据·人工智能·云原生
Amy187021118238 小时前
分布式光纤传感:照亮每一个角落的“温度感知神经”
分布式
ml魔力信息9 小时前
活体检测与防伪技术的安全与隐私分析
大数据·人工智能·安全·隐私保护·生物识别·活体检测
数据要素X10 小时前
寻梦数据空间 | 架构篇:从概念到落地的技术实践与突破性创新
大数据·运维·数据仓库·微服务·数据治理·数据中台·可信数据空间
玉石观沧海10 小时前
高压变频器故障代码解析F67 F68
运维·经验分享·笔记·分布式·深度学习
小马爱打代码11 小时前
分布式锁:原理算法和使用建议
分布式·算法