pytorch小记(四):pytorch中的重排操作:x.permute()

pytorch小记(四):pytorch中的重排操作:x.permute()

      • [1. 初始张量 `x`](#1. 初始张量 x)
      • [2. 调用 `permute` 的原理](#2. 调用 permute 的原理)
      • 案例分析
        • [2.1 `z = x.permute(0, 2, 1)`](#2.1 z = x.permute(0, 2, 1))
        • [2.2 `z = x.permute(1, 0, 2)`](#2.2 z = x.permute(1, 0, 2))
        • [2.3 `z = x.permute(1, 2, 0)`](#2.3 z = x.permute(1, 2, 0))
        • [2.4 `z = x.permute(2, 0, 1)`](#2.4 z = x.permute(2, 0, 1))
        • [2.5 `z = x.permute(2, 1, 0)`](#2.5 z = x.permute(2, 1, 0))
      • 总结

在 PyTorch 中,permute 是一种对张量维度重新排列的方法。它不会更改数据,而是根据指定的顺序交换维度的位置。


1. 初始张量 x

代码:

python 复制代码
x = torch.arange(6).reshape(1, 2, 3)
print(x)

输出

复制代码
tensor([[[0, 1, 2],
         [3, 4, 5]]])
  • x 的形状是 (1, 2, 3)
    • 第 0 维:长度为 1,对应的是最外层的维度(块)。
    • 第 1 维:长度为 2,对应的是行数。
    • 第 2 维:长度为 3,对应的是列数。

2. 调用 permute 的原理

  • permute 的参数是新维度的顺序。
  • 每个参数表示原始维度的索引,permute(a, b, c) 意味着:
    • 原第 a 维变为新第 0 维。
    • 原第 b 维变为新第 1 维。
    • 原第 c 维变为新第 2 维。

具体计算时,张量的内容 不变,只是维度排列的方式发生了变化。


案例分析

2.1 z = x.permute(0, 2, 1)

代码:

python 复制代码
z = x.permute(0, 2, 1)
print(z)

解释

  • permute(0, 2, 1) 表示:
    • 第 0 维保持不变。
    • 第 2 维变为第 1 维。
    • 第 1 维变为第 2 维。

原张量

复制代码
x = [[[0, 1, 2],  
      [3, 4, 5]]] 
      
# 第 0 维:行 ([[0, 1, 2], [3, 4, 5]])
# 第 1 维:行 ([0, 1, 2], [3, 4, 5])
# 第 2 维:列 ([0, ..., 3], [1, ..., 4], [2, ..., 5])

调整后张量

  • 第 0 维(块):仍为 [[0, 1, 2], [3, 4, 5]]
  • 第 1 维:原来的列 [0, ..., 3][1, ..., 4][2, ..., 5]变为行。
  • 第 2 维:原来的行 [0, 1, 2][3, 4, 5] 变为列。

结果

复制代码
tensor([[[0, 3],
         [1, 4],
         [2, 5]]])

2.2 z = x.permute(1, 0, 2)

代码:

python 复制代码
z = x.permute(1, 0, 2)
print(z)

解释

  • permute(1, 0, 2) 表示:
    • 第 1 维变为第 0 维。
    • 第 0 维变为第 1 维。
    • 第 2 维保持不变。

原张量

复制代码
x = [[[0, 1, 2],  
      [3, 4, 5]]] 
      
# 第 0 维:行 ([[0, 1, 2], [3, 4, 5]])
# 第 1 维:行 ([0, 1, 2], [3, 4, 5])
# 第 2 维:列 ([0, ..., 3], [1, ..., 4], [2, ..., 5])

结果

复制代码
tensor([[[0, 1, 2]],
        [[3, 4, 5]]])
  • 第 0 维(原第 1 维):行数变成了最外层维度。
  • 第 1 维(原第 0 维):长度为 1。
  • 第 2 维保持不变。

2.3 z = x.permute(1, 2, 0)

代码:

python 复制代码
z = x.permute(1, 2, 0)
print(z)

解释

  • permute(1, 2, 0) 表示:
    • 第 1 维变为第 0 维。
    • 第 2 维变为第 1 维。
    • 第 0 维变为第 2 维。

原张量

复制代码
x = [[[0, 1, 2],  
      [3, 4, 5]]] 
      
# 第 0 维:行 ([[0, 1, 2], [3, 4, 5]])
# 第 1 维:行 ([0, 1, 2], [3, 4, 5])
# 第 2 维:列 ([0, ..., 3], [1, ..., 4], [2, ..., 5])

结果

复制代码
tensor([[[0],
         [1],
         [2]],
        [[3],
         [4],
         [5]]])
  • 第 0 维(原第 1 维):行数变成了最外层维度。
  • 第 1 维(原第 2 维):列数变成了行。
  • 第 2 维(原第 0 维):长度为 1。

2.4 z = x.permute(2, 0, 1)

代码:

python 复制代码
z = x.permute(2, 0, 1)
print(z)

解释

  • permute(2, 0, 1) 表示:
    • 第 2 维变为第 0 维。
    • 第 0 维变为第 1 维。
    • 第 1 维变为第 2 维。

原张量

复制代码
x = [[[0, 1, 2],  
      [3, 4, 5]]] 
      
# 第 0 维:行 ([[0, 1, 2], [3, 4, 5]])
# 第 1 维:行 ([0, 1, 2], [3, 4, 5])
# 第 2 维:列 ([0, ..., 3], [1, ..., 4], [2, ..., 5])

结果

复制代码
tensor([[[0, 3]],
        [[1, 4]],
        [[2, 5]]])
  • 第 0 维(原第 2 维):列数变成最外层维度。
  • 第 1 维(原第 0 维):长度为 1。
  • 第 2 维(原第 1 维):行数保持不变。

2.5 z = x.permute(2, 1, 0)

代码:

python 复制代码
z = x.permute(2, 1, 0)
print(z)

解释

  • permute(2, 1, 0) 表示:
    • 第 2 维变为第 0 维。
    • 第 1 维保持不变。
    • 第 0 维变为第 2 维。

结果

复制代码
tensor([[[0],
         [3]],
        [[1],
         [4]],
        [[2],
         [5]]])
  • 第 0 维(原第 2 维):列数变成最外层维度。
  • 第 1 维(原第 1 维):行数保持不变。
  • 第 2 维(原第 0 维):长度为 1。

总结

x.permute() 的核心就是重新排列维度,保持数据本身不变。通过指定新维度的顺序,可以调整张量的形状和访问方式,用于数据处理和模型输入等场景。

相关推荐
乐言3612 分钟前
Jmeter中的BeanShell如何使用?
python·jmeter·压力测试
Blossom.1185 分钟前
探索边缘计算:赋能物联网的未来
开发语言·人工智能·深度学习·opencv·物联网·机器学习·边缘计算
-曾牛6 分钟前
Spring AI 与 Hugging Face 深度集成:打造高效文本生成应用
java·人工智能·后端·spring·搜索引擎·springai·deepseek
MaisieKim_22 分钟前
python与nodejs哪个性能高
前端·python·node.js
modest —YBW29 分钟前
Ollama+OpenWebUI+docker完整版部署,附带软件下载链接,配置+中文汉化+docker源,适合内网部署,可以局域网使用
人工智能·windows·docker·语言模型·llama
迪捷软件33 分钟前
从概念表达到安全验证:智能驾驶功能迎来系统性规范
大数据·人工智能
非凡ghost37 分钟前
透视相机:创意摄影新体验,解锁照片无限可能
人工智能·数码相机
林鸿风采1 小时前
内网服务器之间传输单个大文件最佳解决方案
linux·python·文件传输
森叶1 小时前
从 JIT 即时编译一直讲到CGI|FastGGI|WSGI|ASGI四种协议的实现细节
python·php·web
weixin_307779131 小时前
使用FastAPI微服务在AWS EKS中构建上下文增强型AI问答系统
人工智能·python·云计算·fastapi·aws