Hadoop3.3.4伪分布式环境搭建

文章目录


前言

hadoop学习------伪分布式环境------普通用户搭建


一、准备

1. 下载Hadoop

2. 配置环境变量

shell 复制代码
vi ~/.bash_profile

# 增加如下配置
export HADOOP_HOME=/home/install/hadoop-3.3.4
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

# 使配置生效
source ~/.bash_profile

3. 配置免密

二、Hadoop配置

配置的目录是$HADOOP_HOME/etc/hadop

1. hadoop-env.sh

修改JAVA_HOME,设置为JDK所在的位置

shell 复制代码
# Linux命令行输出 JDK 位置
echo $JAVA_HOME

2. hdfs-site.xml

xml 复制代码
<!--指定数据冗余份数-->
<property>
    <name>dfs.replication</name>
    <value>1</value>
</property>
<property>
    <name>dfs.http.address</name>
    <value>hadoop01:50070</value>
</property>

3. core-site.xml

xml 复制代码
 <!--hadoop01是机器名  hostname-->
<property>
    <name>fs.defaultFS</name>
    <value>hdfs://hadoop01:9000</value>
</property>
<!-- hadoop临时目录 -->
<property>
    <name>hadoop.tmp.dir</name>
    <value>/home/install/data/hadoop/HADOOP_TMP_DIR</value>
    <description>Abase for other temporary directories.</description>
</property>
<!--所有用户可访问-->
<property>
    <name>hadoop.proxyuser.hduser.groups</name>
    <value>*</value>
</property>
<!--设置buffer size-->
<property>
    <name>io.file.buffer.size</name>
    <value>131072</value>
</property>
<!--任何IP可访问-->
<property>
    <name>hadoop.proxyuser.hduser.hosts</name>
    <value>*</value>
</property>

4. mapred-site.xml

xml 复制代码
<property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
</property>
<property>
    <name>mapreduce.job.counters.max</name>
    <value>1200000</value>
</property>
<property>
    <name>mapreduce.map.memory.mb</name>
    <value>4096</value>
</property>
<property>
    <name>mapreduce.reduce.memory.mb</name>
    <value>8192</value>
</property>
<property>
    <name>mapreduce.map.java.opts</name>
    <value>-Xmx3072m</value>
</property>
<property>
    <name>mapreduce.reduce.java.opts</name>
    <value>-Xmx6144m</value>
</property>

5. yarn-site.xml

xml 复制代码
<property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
</property>
<property>
    <name>yarn.resourcemanager.hostname</name>
    <value>hadoop01</value>
</property>
<property>
    <name>yarn.nodemanager.vmem-pmem-ratio</name>
    <value>4</value>
</property>
<property>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
</property>
<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>20480</value>
</property>
<property>
    <name>yarn.scheduler.minimum-allocation-mb</name>
    <value>1024</value>
</property>
<property>
    <name>yarn.scheduler.maximum-allocation-mb</name>
    <value>20480</value>
</property>

三、格式化

shell 复制代码
hadoop namenode -format

四、启动

shell 复制代码
# 懒一点的方式
start-all.sh

相关推荐
tan77º12 分钟前
【项目】分布式Json-RPC框架 - 项目介绍与前置知识准备
linux·网络·分布式·网络协议·tcp/ip·rpc·json
BYSJMG1 小时前
计算机大数据毕业设计推荐:基于Hadoop+Spark的食物口味差异分析可视化系统【源码+文档+调试】
大数据·hadoop·分布式·python·spark·django·课程设计
Viking_bird3 小时前
Apache Spark 3.2.0 开发测试环境部署指南
大数据·分布式·ajax·spark·apache
励志成为糕手4 小时前
企业级Spring事务管理:从单体应用到微服务分布式事务完整方案
分布式·spring·微服务·隔离级别·事务管理
Fireworkitte5 小时前
Kafka的ISR、OSR、AR详解
分布式·kafka·ar
计算机毕设-小月哥9 小时前
完整源码+技术文档!基于Hadoop+Spark的鲍鱼生理特征大数据分析系统免费分享
大数据·hadoop·spark·numpy·pandas·计算机毕业设计
zhang98800001 天前
储能领域大数据平台的设计中如何使用 Hadoop、Spark、Flink 等组件实现数据采集、清洗、存储及实时 / 离线计算,支持储能系统分析与预测
大数据·hadoop·spark
Lx3521 天前
Hadoop日志分析实战:快速定位问题的技巧
大数据·hadoop
喂完待续1 天前
【Tech Arch】Hive技术解析:大数据仓库的SQL桥梁
大数据·数据仓库·hive·hadoop·sql·apache