Duke Humanoid:利用被动动力学实现节能双足机器人

在现代机器人技术中,如何实现高效的双足行走一直是一个备受关注的课题。Duke Humanoid项目通过结合被动动力学和强化学习策略,成功打造出一款高效节能的双足机器人。在现代机器人技术中,如何实现高效的双足行走一直是一个备受关注的课题。Duke Humanoid项目通过结合被动动力学和强化学习策略,成功打造出一款高效节能的双足机器人。

设计理念

Duke Humanoid是一个开放源码的平台,拥有10个自由度,专为动态行走研究而设计。其设计模仿了人类的生理结构,特别注重腿部的长度比例和髋部的对称性,使其在零关节位置时能够保持静态平衡。这种设计减少了对持续电机驱动的依赖,通过优化机械结构,使机器人在步态过程中能够更自然地利用重力和惯性。

电机配置与硬件设计

为了实现高效的步态控制,Duke Humanoid在电机配置上进行了精心设计:

  • 电机类型:每个关节都配备了无刷直流电机,结合行星齿轮箱来提供所需的扭矩。
  • 减速比配置
    • 髋部旋转(HR)、髋部屈伸(HFE)和髋部外展内收(HAA)关节使用18:1的减速比电机,提供72N·m的持续扭矩。
    • 膝关节屈伸(KFE)使用20:1的减速比电机,提供80N·m的持续扭矩。
    • 踝关节则采用10:1的减速比电机,提供40N·m的持续扭矩。
  • 机械设计:采用了模块化设计,使用铝合金材质制造主体结构,轻质设计降低了下肢惯性,从而减少了电机的负载需求。此外,电机通过EtherCAT通信进行控制,确保了低延迟的响应。

控制策略与被动动力学

Duke Humanoid的控制策略是一种混合模式,结合了被动和主动控制方法:

  • 被动动力学:通过借助腿部的钟摆式运动,机器人在行走时利用了重力和惯性,从而减少了对电机驱动力的需求。这一策略特别适合低速步行。
  • 主动控制:通过传感器和强化学习算法,实时调整机器人的姿态和平衡,使其能够适应复杂地形和环境变化。

实验数据显示,在模拟环境中,采用被动控制策略后,机器人的能效提高了50%。在实际测试中,能效也提升了31%,显著减少了能量消耗。

Duke Humanoid通过创新的机械设计和控制策略,在机器人步态研究中树立了新的标杆。其通过结合被动动力学,不仅提升了能效,还推动了开放源码硬件在机器人领域的应用,为未来的研究和开发提供了广阔的空间。

相关推荐
m0_689618288 分钟前
从海洋生物找灵感:造个机器人RoboPteropod,它能在水下干啥?
笔记·机器人
望获linux2 小时前
医疗实时操作系统方案:手术机器人的微秒级运动控制
人工智能·机器人·实时操作系统·rtos·嵌入式软件·医疗自动化
鸿蒙布道师8 小时前
宇树科技安全漏洞揭示智能机器人行业隐忧
运维·网络·科技·安全·机器学习·计算机视觉·机器人
陈苏同学8 小时前
MPC控制器从入门到进阶(小车动态避障变道仿真 - Python)
人工智能·python·机器学习·数学建模·机器人·自动驾驶
Robot25112 小时前
「华为」人形机器人赛道投资首秀!
大数据·人工智能·科技·microsoft·华为·机器人
放羊郎19 小时前
具身智能机器人开源陪跑计划(机器人实战落地)
机器人·开源·具身智能·项目陪跑·从零开发
机器人之树小风1 天前
KUKA机器人安装包选项KUKA.PLC mxAutomation软件
经验分享·科技·机器人
强化学习与机器人控制仿真1 天前
openpi 入门教程
开发语言·人工智能·python·深度学习·神经网络·机器人·自动驾驶
猫头虎1 天前
5G-A来了!5G信号多个A带来哪些改变?
5g·机器人·web3·aigc·社交电子·能源·量子计算
一颗小树x1 天前
【机器人】复现 UniGoal 具身导航 | 通用零样本目标导航 CVPR 2025
机器人·具身导航·unigoal