【Pandas】pandas Series rtruediv

Pandas2.2 Series

Binary operator functions

方法 描述
Series.add() 用于对两个 Series 进行逐元素加法运算
Series.sub() 用于对两个 Series 进行逐元素减法运算
Series.mul() 用于对两个 Series 进行逐元素乘法运算
Series.div() 用于对两个 Series 进行逐元素除法运算
Series.truediv() 用于执行真除法(即浮点数除法)操作
Series.floordiv() 用于执行地板除法(即整数除法)操作
Series.mod() 用于执行逐元素的取模运算
Series.pow() 用于执行逐元素的幂运算
Series.radd() 用于执行反向逐元素加法运算
Series.rsub() 用于执行反向逐元素减法运算
Series.rmul() 用于执行反向逐元素乘法运算
Series.rdiv() 用于执行反向逐元素除法运算
Series.rtruediv() 用于执行反向逐元素的真除法(即浮点数除法)运算

pandas.Series.rtruediv

pandas.Series.rtruediv 是 Pandas 库中 Series 对象的一个方法,用于执行反向逐元素的真除法(即浮点数除法)运算。反向真除法运算意味着将当前 Series 中的每个元素与另一个 Series、标量或其他可迭代对象中的对应元素进行真除法运算,但顺序是反向的。具体来说,s1.rtruediv(s2) 等价于 s2 / s1

主要特点
  • 逐元素真除法运算:对两个 Series 进行逐元素的真除法操作。
  • 自动对齐索引 :如果两个 Series 的索引不匹配,rtruediv() 方法会自动对齐索引,并在缺失值处填充指定的值(默认为 NaN)。
  • 支持缺失值填充 :可以通过 fill_value 参数指定缺失值的填充方式。
  • 支持广播操作:可以与标量进行真除法操作。
参数说明
  • other: 另一个 Series、标量或其他可迭代对象,用于执行除法运算。
  • level: 如果两个 Series 对象的索引是多重索引,则可以指定在哪个级别进行对齐。
  • fill_value: 如果在对齐过程中出现缺失值(NaN),可以使用 fill_value 指定一个值来填充这些缺失值,从而避免产生 NaN 结果。
  • axis: 指定操作的轴,默认为 0。
返回值

返回一个新的 Series 对象,其中包含反向逐元素真除法运算的结果。

示例代码
示例1: 标量反向真除法
python 复制代码
import pandas as pd

# 创建一个 Series
series = pd.Series([1, 2, 3, 4])

# 使用 rtruediv() 方法进行标量反向真除法
result = series.rtruediv(10)

print("标量反向真除法结果:")
print(result)
运行结果
python 复制代码
标量反向真除法结果:
0    10.000000
1     5.000000
2     3.333333
3     2.500000
dtype: float64
示例2: Series 反向真除法
python 复制代码
import pandas as pd

# 创建两个 Series
series1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
series2 = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])

# 使用 rtruediv() 方法进行 Series 反向真除法
result = series1.rtruediv(series2)

print("Series 反向真除法结果:")
print(result)
运行结果
python 复制代码
Series 反向真除法结果:
a    10.0
b    10.0
c    10.0
d    10.0
dtype: float64
示例3: 使用 fill_value 参数处理缺失值
python 复制代码
import pandas as pd
import numpy as np

# 创建两个索引不完全匹配的 Series
series1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
series2 = pd.Series([10, 20, 30], index=['a', 'b', 'c'])

# 使用 rtruediv() 方法进行反向真除法,并使用 fill_value 参数填充缺失值
result = series1.rtruediv(series2, fill_value=1)

print("使用 fill_value 参数的反向真除法结果:")
print(result)
运行结果
python 复制代码
使用 fill_value 参数的反向真除法结果:
a    10.00
b    10.00
c    10.00
d     0.25
dtype: float64

在这个例子中,series2 没有索引 'd',因此在对齐时 series2['d'] 被视为缺失值,并用 fill_value 指定的值 1 来代替,从而计算出 0.25

示例4: 索引不匹配的反向真除法
python 复制代码
import pandas as pd

# 创建两个索引不完全匹配的 Series
series1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
series2 = pd.Series([10, 20, 30], index=['b', 'c', 'd'])

# 使用 rtruediv() 方法进行反向真除法
result = series1.rtruediv(series2)

print("索引不匹配的反向真除法结果:")
print(result)
运行结果
python 复制代码
索引不匹配的反向真除法结果:
a         NaN
b    5.000000
c    6.666667
d    7.500000
dtype: float64

在这个例子中,series1series2 的索引不完全匹配,未对齐的索引位置结果为 NaN。

通过这些示例,可以看到 pandas.Series.rtruediv 方法在处理 Series 之间的反向逐元素真除法运算时的强大功能和灵活性。它支持自动对齐索引、缺失值填充和广播操作,使得数据处理更加灵活和高效。

相关推荐
WooaiJava9 分钟前
AI 智能助手项目面试技术要点总结(前端部分)
javascript·大模型·html5
爱喝白开水a28 分钟前
前端AI自动化测试:brower-use调研让大模型帮你做网页交互与测试
前端·人工智能·大模型·prompt·交互·agent·rag
Never_Satisfied29 分钟前
在JavaScript / HTML中,关于querySelectorAll方法
开发语言·javascript·html
董世昌4129 分钟前
深度解析ES6 Set与Map:相同点、核心差异及实战选型
前端·javascript·es6
WeiXiao_Hyy1 小时前
成为 Top 1% 的工程师
java·开发语言·javascript·经验分享·后端
吃杠碰小鸡2 小时前
高中数学-数列-导数证明
前端·数学·算法
kingwebo'sZone2 小时前
C#使用Aspose.Words把 word转成图片
前端·c#·word
xjt_09012 小时前
基于 Vue 3 构建企业级 Web Components 组件库
前端·javascript·vue.js
我是伪码农2 小时前
Vue 2.3
前端·javascript·vue.js
夜郎king3 小时前
HTML5 SVG 实现日出日落动画与实时天气可视化
前端·html5·svg 日出日落