【声音场景分类--论文阅读】

1.基于小波时频图特征在声音场景分类

基于小波时频图特征在声音场景分类任务中的表现

2.增强增强高效音频分类网络

https://arxiv.org/pdf/2204.11479v5

https://github.com/Alibaba-MIIL/AudioClassfication

音频分类网络如图4所示。在此阶段,主要重点是建立一个神经网络具有较大的感受野,同时保持较低的复杂性。可以将网络分解为两个主块、1D卷积堆栈和变换器编码器块。前者沿时间轴进行降采样

其中卷积层耦合到固定低通滤波器[29,30],然后是间歇残差块[18]。这个残差块根据[31]进行修改,由深度卷积和大核操作组成f(x)是跨通道操作的核大小等于1的卷积。此时,信号

使用一系列因子di除以总因子d进行抽取=Qdi例如,5秒的信号下采样序列的持续时间等于[4,4,4,4],执行256倍的缩减。这可能是为了在某种程度上与频谱图操作期间进行的下采样有关。以下构建块执行进一步减少,每次减少后都有一堆扩张的残余块[32]。这种改进能够提高在每帧的感受野中,因此对环境类中的可变持续时间事件更具鲁棒性声音场景。使用变压器编码器块实现了跨帧收集特征图,该块然后是全连接层,将嵌入向量投影到类空间。

3.PANNs:大规模预训练音频神经网络音频模式识别

https://arxiv.org/pdf/1912.10211v5

https://github.com/qiuqiangkong/audioset_tagging_cnn

Wavegram CNN和Wavegram Logmel CNN for AudioSet标签。我们提出的Wavegram CNN是一个时域音频标签系统。Wavegram是我们提出的一个功能这类似于log-mel频谱图,但使用神经网络。波形图被设计用来学习傅里叶变换的时频表示转变。波形图具有时间轴和频率轴。频率模式对于音频模式识别很重要,例如,具有不同音高偏移的声音属于同一个班级。波形图旨在学习频率一维CNN中可能缺少的信息系统。波形图也可能比手工制作的原木更好通过学习一种新的时频来获得mel谱图从数据转换。然后,波形图可以代替log-mel光谱图作为输入特征,形成我们的WavegramCNN系统。我们还结合了Wavegram和log-mel频谱图作为构建Wavegram-LogmelCNN系统的新功能.

相关推荐
诗酒当趁年华1 小时前
【NLP实践】二、自训练数据实现中文文本分类并提供RestfulAPI服务
人工智能·自然语言处理·分类
Blossom.11813 小时前
基于深度学习的图像分类:使用Capsule Networks实现高效分类
人工智能·python·深度学习·神经网络·机器学习·分类·数据挖掘
Re_Yang0917 小时前
数学专业转型数据分析竞争力发展报告
数据挖掘·数据分析
workflower17 小时前
数据分析前景
算法·数据挖掘·数据分析·需求分析·软件需求
钟屿18 小时前
Multiscale Structure Guided Diffusion for Image Deblurring 论文阅读
论文阅读·图像处理·人工智能·深度学习·计算机视觉
张较瘦_20 小时前
[论文阅读] 人工智能 + 软件工程 | NoCode-bench:评估LLM无代码功能添加能力的新基准
论文阅读·人工智能·软件工程
go546315846520 小时前
Python点阵字生成与优化:从基础实现到高级渲染技术
开发语言·人工智能·python·深度学习·分类·数据挖掘
简简单单做算法1 天前
基于LSTM深度学习网络的视频类型分类算法matlab仿真
深度学习·matlab·分类·lstm·视频类型分类
pk_xz1234561 天前
光电二极管探测器电流信号处理与指令输出系统
人工智能·深度学习·数学建模·数据挖掘·信号处理·超分辨率重建
优宁维生物1 天前
血液样本的分类与应用
人工智能·分类·数据挖掘