【声音场景分类--论文阅读】

1.基于小波时频图特征在声音场景分类

基于小波时频图特征在声音场景分类任务中的表现

2.增强增强高效音频分类网络

https://arxiv.org/pdf/2204.11479v5

https://github.com/Alibaba-MIIL/AudioClassfication

音频分类网络如图4所示。在此阶段,主要重点是建立一个神经网络具有较大的感受野,同时保持较低的复杂性。可以将网络分解为两个主块、1D卷积堆栈和变换器编码器块。前者沿时间轴进行降采样

其中卷积层耦合到固定低通滤波器[29,30],然后是间歇残差块[18]。这个残差块根据[31]进行修改,由深度卷积和大核操作组成f(x)是跨通道操作的核大小等于1的卷积。此时,信号

使用一系列因子di除以总因子d进行抽取=Qdi例如,5秒的信号下采样序列的持续时间等于[4,4,4,4],执行256倍的缩减。这可能是为了在某种程度上与频谱图操作期间进行的下采样有关。以下构建块执行进一步减少,每次减少后都有一堆扩张的残余块[32]。这种改进能够提高在每帧的感受野中,因此对环境类中的可变持续时间事件更具鲁棒性声音场景。使用变压器编码器块实现了跨帧收集特征图,该块然后是全连接层,将嵌入向量投影到类空间。

3.PANNs:大规模预训练音频神经网络音频模式识别

https://arxiv.org/pdf/1912.10211v5

https://github.com/qiuqiangkong/audioset_tagging_cnn

Wavegram CNN和Wavegram Logmel CNN for AudioSet标签。我们提出的Wavegram CNN是一个时域音频标签系统。Wavegram是我们提出的一个功能这类似于log-mel频谱图,但使用神经网络。波形图被设计用来学习傅里叶变换的时频表示转变。波形图具有时间轴和频率轴。频率模式对于音频模式识别很重要,例如,具有不同音高偏移的声音属于同一个班级。波形图旨在学习频率一维CNN中可能缺少的信息系统。波形图也可能比手工制作的原木更好通过学习一种新的时频来获得mel谱图从数据转换。然后,波形图可以代替log-mel光谱图作为输入特征,形成我们的WavegramCNN系统。我们还结合了Wavegram和log-mel频谱图作为构建Wavegram-LogmelCNN系统的新功能.

相关推荐
用户Taobaoapi201415 分钟前
京东图片搜索相似商品API开发指南
大数据·数据挖掘·数据分析
带娃的IT创业者1 小时前
《AI大模型应知应会100篇》第69篇:大模型辅助的数据分析应用开发
人工智能·数据挖掘·数据分析
大嘴带你水论文4 小时前
震惊!仅用10张照片就能随意编辑3D人脸?韩国KAIST最新黑科技FFaceNeRF解析!
论文阅读·人工智能·python·科技·计算机视觉·3d·transformer
㱘郳8 小时前
cifar10分类对比:使用PyTorch卷积神经网络和SVM
pytorch·分类·cnn
Chandler_Song14 小时前
【设计模式】依赖注入和工厂模式
论文阅读
云天徽上18 小时前
【数据可视化-107】2025年1-7月全国出口总额Top 10省市数据分析:用Python和Pyecharts打造炫酷可视化大屏
开发语言·python·信息可视化·数据挖掘·数据分析·pyecharts
THMAIL18 小时前
机器学习从入门到精通 - 数据预处理实战秘籍:清洗、转换与特征工程入门
人工智能·python·算法·机器学习·数据挖掘·逻辑回归
Daisy_JuJuJu19 小时前
【科研成果速递-IJGIS】如何描述与分类移动对象的时空模式?一个新的分类框架与体系!
分类·数据挖掘·科研·运动模式·移动对象
JJJJ_iii19 小时前
【左程云算法03】对数器&算法和数据结构大致分类
数据结构·算法·分类
赴3351 天前
残差网络 迁移学习对食物分类案例的改进
人工智能·分类·迁移学习·resnet18