算法面试准备 - 手撕系列第一期 - Softmax

算法面试准备 - 手撕系列第一期 - Softmax

目录

  • [算法面试准备 - 手撕系列第一期 - Softmax](#算法面试准备 - 手撕系列第一期 - Softmax)
    • Softmax原理图
    • [Softmax实现代码 - 复杂版和简单版本(推荐简单版本)](#Softmax实现代码 - 复杂版和简单版本(推荐简单版本))
    • 参考

Softmax原理图


Softmax原理图

Softmax实现代码 - 复杂版和简单版本(推荐简单版本)

  • 方法一:循环计算
python 复制代码
import torch


def softmax(X): # X为Tensor向量,大小为(batch_size,len)
    # 方法一,复杂版本
    for i in range(X.size()[0]):
        # 取出某行的Tensor
        # 为了防止数据的上下,先把数据减去最大值
        X[i]-=max(X[i].clone())
        X[i]=torch.exp(X[i])
        X[i]/=X[i].sum()
    return X

   

if __name__=='__main__':
    X=[[i for i in range(4)] ,[j for j in range(1,5) ],[5,4,3,2]]

    X=torch.tensor(X,dtype=torch.float)
    print(softmax(X))
  • 方法二:广播利用torch函数
python 复制代码
import torch


def softmax(X): # X为Tensor向量,大小为(batch_size,len)
    # 方法二:简单版本

    # 增加一步,防止数据上下溢出
    # (batch_size, 1)
    X_max,X_index=torch.max(X,dim=1,keepdim=True) # 让其保持二维
    X -= X_max
    # 取exp
    X_exp = torch.exp(X)
    # 求和从1维求和得到的是(batch_size,1)
    X_sum=X_exp.sum(dim=1,keepdim=True)
    return X_exp/X_sum

if __name__=='__main__':
    X=[[i for i in range(4)] ,[j for j in range(1,5) ],[5,4,3,2]]

    X=torch.tensor(X,dtype=torch.float)
    print(softmax(X))

参考

小红书资料:哲学专业转算法岗|手撕softmax - 小红书

相关推荐
JD技术委员会26 分钟前
Rust 语法噪音这么多,是否适合复杂项目?
开发语言·人工智能·rust
liruiqiang0531 分钟前
机器学习 - 投票感知器
人工智能·算法·机器学习
刘什么洋啊Zz4 小时前
MacOS下使用Ollama本地构建DeepSeek并使用本地Dify构建AI应用
人工智能·macos·ai·ollama·deepseek
奔跑草-4 小时前
【拥抱AI】GPT Researcher 源码试跑成功的心得与总结
人工智能·gpt·ai搜索·deep research·深度检索
禁默5 小时前
【第四届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2025】网络安全,人工智能,数字经济的研究
人工智能·安全·web安全·数字经济·学术论文
学编程的小程5 小时前
LeetCode216
算法·深度优先
leeyayai_xixihah5 小时前
2.21力扣-回溯组合
算法·leetcode·职场和发展
01_5 小时前
力扣hot100——相交,回文链表
算法·leetcode·链表·双指针
萌の鱼5 小时前
leetcode 2826. 将三个组排序
数据结构·c++·算法·leetcode
Buling_06 小时前
算法-哈希表篇08-四数之和
数据结构·算法·散列表