算法面试准备 - 手撕系列第一期 - Softmax

算法面试准备 - 手撕系列第一期 - Softmax

目录

  • [算法面试准备 - 手撕系列第一期 - Softmax](#算法面试准备 - 手撕系列第一期 - Softmax)
    • Softmax原理图
    • [Softmax实现代码 - 复杂版和简单版本(推荐简单版本)](#Softmax实现代码 - 复杂版和简单版本(推荐简单版本))
    • 参考

Softmax原理图


Softmax原理图

Softmax实现代码 - 复杂版和简单版本(推荐简单版本)

  • 方法一:循环计算
python 复制代码
import torch


def softmax(X): # X为Tensor向量,大小为(batch_size,len)
    # 方法一,复杂版本
    for i in range(X.size()[0]):
        # 取出某行的Tensor
        # 为了防止数据的上下,先把数据减去最大值
        X[i]-=max(X[i].clone())
        X[i]=torch.exp(X[i])
        X[i]/=X[i].sum()
    return X

   

if __name__=='__main__':
    X=[[i for i in range(4)] ,[j for j in range(1,5) ],[5,4,3,2]]

    X=torch.tensor(X,dtype=torch.float)
    print(softmax(X))
  • 方法二:广播利用torch函数
python 复制代码
import torch


def softmax(X): # X为Tensor向量,大小为(batch_size,len)
    # 方法二:简单版本

    # 增加一步,防止数据上下溢出
    # (batch_size, 1)
    X_max,X_index=torch.max(X,dim=1,keepdim=True) # 让其保持二维
    X -= X_max
    # 取exp
    X_exp = torch.exp(X)
    # 求和从1维求和得到的是(batch_size,1)
    X_sum=X_exp.sum(dim=1,keepdim=True)
    return X_exp/X_sum

if __name__=='__main__':
    X=[[i for i in range(4)] ,[j for j in range(1,5) ],[5,4,3,2]]

    X=torch.tensor(X,dtype=torch.float)
    print(softmax(X))

参考

小红书资料:哲学专业转算法岗|手撕softmax - 小红书

相关推荐
Jacob_AI4 分钟前
大模型——RAG
数据库·人工智能·算法
尚儒客栈6 分钟前
岁末随笔之人工智能(上)
人工智能·百度
XianxinMao9 分钟前
开源AI模型的优势、挑战与未来发展分析
人工智能
幻风_huanfeng1 小时前
数学:机器学习的理论基石
人工智能·机器学习
坐吃山猪1 小时前
机器学习06-正则化
人工智能·机器学习
有Li1 小时前
胶质母细胞瘤浸润的个性化预测:数学模型、物理信息神经网络和多模态扫描|文献速递-视觉大模型医疗图像应用
人工智能·深度学习·神经网络
快敲啊死鬼1 小时前
代码随想录24 leetcode404.左叶子之和
算法·leetcode·职场和发展
汤姆和杰瑞在瑞士吃糯米粑粑1 小时前
【优先算法】滑动窗口--(结合例题讲解解题思路)(C++)
数据结构·c++·算法
滨HI01 小时前
541. 反转字符串 II【力扣】
c++·算法·leetcode·职场和发展
风间琉璃•2 小时前
算法分析与设计之动态规划算法
算法·动态规划