023:到底什么是感受野?

本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。

合集完整版请查看这里

在前面介绍卷积算法时,一直在强调一个内容,那就是卷积算法的运算过程是------

卷积核在输入图像上滑动扫描的过程。

在每一次扫描时,可以把卷积核看做一个窗口,透过这个窗口可以看到的输入图像的范围,就被称为感受野,也就是卷积核在每一次扫描过程中覆盖到的图像视野。

这个概念很好理解,但是有必要对这个概念再深入介绍一下,因为感受野这一概念,和很多神经网络结构和特性都有着千丝万缕的关系。

重温卷积的计算过程

你应该可以从上图中找到感受野的位置了。

在上图中,感受野就是每次卷积核移动时,投影在图片的一个 3x3 的正方形范围,透过他,你可以看到输出图像中的每一个像素与输入图像中的哪些像素有关。

换句话说,它表示一个输出像素透过卷积核"看到"的输入图像中区域的大小,注意是从输出来看的。

上图右侧图像是输出特征图,其输出最左上角的像素点为12.0,它透过3x3的矩阵看到的是输入图像左上角的3x3的像素矩阵;最后一个输出14.0,透过3x3的矩阵看到的是输入图像右下角的3x3的像素矩阵,这个3x3的像素矩阵就是这个卷积的感受野。

感受野的意义

可以这么说,感受野影响了神经网络对于图像的理解和图像特征的提取。

一个大的感受野可以使卷积看到输入图像上更大的像素范围,更好地理解图像的全局信息,从而提取全局特征,如物体的形状和轮廓。

而较小的感受野只能捕捉到图像的局部特征,如边缘或纹理。

因此,在很多神经网络中,往往会出现不同大小的卷积核,比如有 3x3 的卷积核,也有5x5的卷积核。

不同大小的卷积核的目的,就是为了提取不同尺度范围内的特征,让神经网络既可以学到图像的细节、又可以看到图像的轮廓。

就和人眯着眼睛看细节,张大眼睛看全局图像一样。

为什么2个3x3的卷积可以替换一个5x5的卷积

如果你看过一些论文,可能经常会看到一个操作------为了优化神经网络的性能,可以将其中一个大的卷积核用几个小的卷积核来代替。

比如,一个5x5的卷积就可以用两个3x3的卷积来代替。

之所以可以这样做,是因为从输出像素来看,两个3x3的卷积和一个5x5的卷积,在最初的输入上具有相同的感受野。

而这样做,除了感受野相同,实现的效果类似之外,还有其他的好处:

好处1

两个3x3的卷积所需要的参数量要比一个5x5的卷积参数量少。这里忽略通道的存在,两个3x3的卷积核参数量为 3x3 + 3x3 = 18,而一个 5x5 的参数量则为25。所以将一个5x5的卷积替换为两个3x3的卷积,有利于加快卷积运算,减少卷积参数的内存占用。

好处2

一个卷积变为两个卷积,可以加深神经网络的层数,从而在卷积后面引入非线性层(比如 Relu层),增加卷积神经网络的非线性能力。

总的来说,卷积的感受野就像是一扇窗户:

你站在小窗户前,就只能看到窗外的一小部分景色,此时你就是一个局部感知。但如果你站在大窗户前,你可以看到更广阔的景色,此时你拥有一个更大的感受野,你就拥有一个全局感知。

Resnet50 模型提取图像特征,就是通过网络中或大或小尺寸的卷积核提取出不同尺度的下的特征,最后通过全连接层的操作将提取到的特征进一步融合,达到图像识别的目的。

相关推荐
兰亭妙微36 分钟前
用户体验的真正边界在哪里?对的 “认知负荷” 设计思考
人工智能·ux
13631676419侯41 分钟前
智慧物流与供应链追踪
人工智能·物联网
TomCode先生43 分钟前
MES 离散制造核心流程详解(含关键动作、角色与异常处理)
人工智能·制造·mes
zd2005721 小时前
AI辅助数据分析和学习了没?
人工智能·学习
johnny2331 小时前
强化学习RL
人工智能
乌恩大侠1 小时前
无线网络规划与优化方式的根本性变革
人工智能·usrp
放羊郎1 小时前
基于萤火虫+Gmapping、分层+A*优化的导航方案
人工智能·slam·建图·激光slam
王哈哈^_^1 小时前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
SEOETC2 小时前
数字人技术:虚实交融的未来图景正在展开
人工智能
boonya2 小时前
从阿里云大模型服务平台百炼看AI应用集成与实践
人工智能·阿里云·云计算