Windows下建立Jupyter-lab 编程环境
方法1在python 虚拟环境下启动(失败)
首先激活环境
进入python的scripts目录,执行激活文件:
cd py311\Scripts
activate.bat
安装jupyter
pip install jupyter -U
启动jupyter-lab
进入工作目录,比如e:盘根目录,执行
jupyter-lab
但是用这种方法报错kernel没有找到,后面有详细的调试信息。
方法2 在Anaconda的PowerShell环境下启动
直接windows里快捷图标启动Anaconda的Powershell环境,shell里切换到e:盘,然后执行jupyter-lab启动,这样jupyter-lab就启动了。
很简单是不是?在顺利的情况下,windows下的程序就启动就是这么简单方便。
总结
在Windows下,最快启动jupyter-lab的方法,是安装Anaconda ,然后到Powershell环境里,切换到工作目录后,执行jupyter-lab启动。如果不考虑设置工作目录,使用默认目录的话,直接用启动菜单里的Jupyter notebook 图标启动即可。
前面之所以走了弯路,是因为在Linux、FreeBSD下习惯了创建虚拟python环境,在虚拟环境安装各种软件,而这次在windows下虚拟环境里的内核没有注册上来导致的。也就是既然选了Windows,也就别整那么多虚拟python环境了,换句话说,即使要整,直接多安装一个Anaconda软件就好了,这样肯定不会出问题。
调试
jupyter-lab启动后报错kernel没有找到
[E 2025-01-20 09:31:48.385 ServerApp] 500 PUT /api/contents/work/five/Untitled.ipynb?1737336708309 (02c6c05c95694255880b6c0209b701c3@::1) 73.21ms referer=http://localhost:8888/lab/tree/work/five/Untitled.ipynb
[W 2025-01-20 09:31:49.282 ServerApp] 404 GET /api/kernels/88bf4ba0-dd94-4d23-8b4f-a41826aa36f0?1737336709278 (::1): Kernel does not exist: 88bf4ba0-dd94-4d23-8b4f-a41826aa36f0
[W 2025-01-20 09:31:49.282 ServerApp] wrote error: 'Kernel does not exist: 88bf4ba0-dd94-4d23-8b4f-a41826aa36f0'
Traceback (most recent call last):
File "E:\py311\Lib\site-packages\tornado\web.py", line 1790, in _execute
result = await result
^^^^^^^^^^^^
File "E:\py311\Lib\site-packages\jupyter_server\auth\decorator.py", line 73, in inner
return await out
^^^^^^^^^
File "E:\py311\Lib\site-packages\jupyter_server\services\kernels\handlers.py", line 75, in get
model = await ensure_async(km.kernel_model(kernel_id))
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\py311\Lib\site-packages\jupyter_server\services\kernels\kernelmanager.py", line 508, in kernel_model
self._check_kernel_id(kernel_id)
File "E:\py311\Lib\site-packages\jupyter_server\services\kernels\kernelmanager.py", line 539, in _check_kernel_id
raise web.HTTPError(404, "Kernel does not exist: %s" % kernel_id)
tornado.web.HTTPError: HTTP 404: Not Found (Kernel does not exist: 88bf4ba0-dd94-4d23-8b4f-a41826aa36f0)
查找当前内核
Available kernels:
python3 E:\py311\share\jupyter\kernels\python3
查看内核目录:
dir E:\py311\share\jupyter\kernels\python3
驱动器 E 中的卷是 新加卷
卷的序列号是 CA89-671D
E:\py311\share\jupyter\kernels\python3 的目录
2025/01/20 09:29 <DIR> .
2025/01/20 09:29 <DIR> ..
2025/01/20 09:29 193 kernel.json
2025/01/20 09:29 1,084 logo-32x32.png
2025/01/20 09:29 2,180 logo-64x64.png
2025/01/20 09:29 9,605 logo-svg.svg
4 个文件 13,062 字节
2 个目录 845,146,857,472 可用字节
打开内核配置文件kernel.json
notepad E:\py311\share\jupyter\kernels\python3\kernel.json
发现conda目录跟当前env环境目录不一致:
base environment : E:\Program Files\anaconda (writable)
现在的解决方法有两个:要么在内核设置这里改一下,要么用conda env 里的环境激活一下。
我们先尝试第一种方法:
修改内核配置文件,将"python" 修改成"E:\py311\Scripts\python.exe" ,问题没有解决。
尝试第二种方法
直接进入mini conda mini 环境,然后执行jupyter-lab
结果还是报错
File "E:\Program Files\anaconda\Lib\site-packages\prompt_toolkit\styles\from_dict.py", line 9, in <module>
from collections import Mapping
ImportError: cannot import name 'Mapping' from 'collections' (E:\Program Files\anaconda\Lib\collections\__init__.py)
[W 2025-01-20 09:46:52.779 ServerApp] AsyncIOLoopKernelRestarter: restart failed
[W 2025-01-20 09:46:52.780 ServerApp] Kernel 2eb1e25f-9d86-4d77-aaa4-71e3b9403611 died, removing from map.
[W 2025-01-20 09:47:34.641 ServerApp] Timeout waiting for kernel_info reply from 2eb1e25f-9d86-4d77-aaa4-71e3b9403611
[W 2025-01-20 09:47:34.644 ServerApp] 404 GET /api/kernels/2eb1e25f-9d86-4d77-aaa4-71e3b9403611/channels?session_id=b33f0ee6-c840-431e-bb42-43efd6fc6dd8 (::1): Kernel does not exist: 2eb1e25f-9d86-4d77-aaa4-71e3b9403611
[W 2025-01-20 09:47:34.918 ServerApp] Timeout waiting for kernel_info reply from 2eb1e25f-9d86-4d77-aaa4-71e3b9403611
[W 2025-01-20 09:47:34.921 ServerApp] 404 GET /api/kernels/2eb1e25f-9d86-4d77-aaa4-71e3b9403611/channels?session_id=2dce7765-d068-4e8a-b26d-6832a6e6801e (127.0.0.1): Kernel does not exist: 2eb1e25f-9d86-4d77-aaa4-71e3b9403611
明白了,它还是找到的anaconda,素以还是进入anaconda的环境试试吧。
直接快捷图标启动anaconda jupyter notebook,但是目录是默认目录。于是还是到anaconda的powershell环境里,切换到e:盘后,执行jupyter-lab启动
这回就正常了。