图像点处理

怎么理解灰度图?

RGB很明显有三个通道
**我们看红色通道,**因为天空中红色含量(R值)最少,因此红色通道中的天空最暗,而因为建筑红色含量(R值)最高,所以红色通道中的建筑最亮。

怎么理解灰度分布图

x轴为灰度值。表示0~255
y轴为像素数量(频率),表示图像中具有特定灰度值的像素数量。

灰度分布图常见典型特征:

(1)平坦分布:

如果灰度直方图在所有灰度值上分布比较均匀(即y轴值变化不大),说明对比度低。

(2)高峰集中在某一部分:

如果高峰集中在低灰度值区域(靠近0),说明图像偏暗。

如果高峰集中在高灰度值区域(靠近255),说明图像整体偏亮。

(3)双峰分布:

如果灰度直方图有两个明显的峰值,可能表示图像中存在两种主要的灰度区域(例如,背景和目标物体。

灰度分布图的应用:

图像增强:通过调整灰度分布(如直方图均衡化),可以改善图像的对比度和视觉效果。

图像分割:通过分析灰度分布的峰值和谷值,可以确定合适的阈值,用于分割图像中的不同区域。

图像校正:通过观察灰度分布,可以判断图像是否过暗或过亮,并采取相应的校正措施(如伽马变换)

图像点处理定义:

图像点处理是一种对每个像素单独进行操作的处理方式。点处理的核心在于直接对像素的灰度值或颜色值进行变换,而不依赖于像素周围的邻域信息。这种处理方式的特点是像素之间的处理相互独立,因此非常适合并行计算,例如利用GPU加速。

图像点处理可以分为线性点运算和非线性点运算:

线性点运算:

通过线性函数s=ar + b实现,其中r是输入像素值,s是输出像素值,a和b是常数。这种运算可以用于调整图像的亮度和对比度。

非线性点运算:

(1)指数点运算

作用:拓展图像的高灰度级,压缩图像的低灰度级。

(2)对数点运算

作用:扩展图像的低灰度级,压缩图像的高灰度级

(3)对数变换

常用于图像处理中以增强图像的暗部细节。

其基本公式为: s = c log(1 + r)

其中,r 是输入图像的灰度值,s 是输出图像的灰度值,c 是一个常数,用于调整变换后的灰度值范围。

(4)伽马变换

常用于调整图像的对比度和亮度。其基本公式为: s = c × r^γ

其中,r 是输入灰度值,s 是输出灰度值,cγ 是正常数。

γ < 1 时,伽马变换会拉伸低灰度值区域,压缩高灰度值区域,使图像的暗部更亮

γ > 1 时,伽马变换会拉伸高灰度值区域,压缩低灰度值区域,使图像的亮部更亮

相关推荐
泰迪智能科技3 分钟前
分享|企业数据挖掘平台产品功能
人工智能·数据挖掘
散峰而望4 分钟前
【算法竞赛】顺序表和vector
c语言·开发语言·数据结构·c++·人工智能·算法·github
FL171713146 分钟前
Geometric Control
人工智能·算法
郑州光合科技余经理8 分钟前
架构解析:同城本地生活服务o2o平台海外版
大数据·开发语言·前端·人工智能·架构·php·生活
小小工匠8 分钟前
LLM - 将业务 SOP 变成 AI 能力:用 Skill + MCP 驱动 Spring AI 应用落地不完全指南
人工智能·skill·spring ai·mcp
一条咸鱼_SaltyFish11 分钟前
[Day12] 合同审查引擎开发中的技术挑战与解决之道 contract-review-engine
开发语言·人工智能·程序人生·开源软件·ddd·个人开发·ai编程
百***243713 分钟前
GPT-5.2国内稳定调用指南:API中转适配与成本管控实操
大数据·人工智能
瑶芯微电子13 分钟前
荣誉奖项 | 瑶芯荣获碳化硅器件十强企业及年度优秀产品奖
人工智能
Want59513 分钟前
未来AI会取代人类吗?
人工智能·大模型·aigc
昨夜见军贴061613 分钟前
IACheck AI审核:旅游行业服务规范合规升级
大数据·人工智能·旅游