图像点处理

怎么理解灰度图?

RGB很明显有三个通道
**我们看红色通道,**因为天空中红色含量(R值)最少,因此红色通道中的天空最暗,而因为建筑红色含量(R值)最高,所以红色通道中的建筑最亮。

怎么理解灰度分布图

x轴为灰度值。表示0~255
y轴为像素数量(频率),表示图像中具有特定灰度值的像素数量。

灰度分布图常见典型特征:

(1)平坦分布:

如果灰度直方图在所有灰度值上分布比较均匀(即y轴值变化不大),说明对比度低。

(2)高峰集中在某一部分:

如果高峰集中在低灰度值区域(靠近0),说明图像偏暗。

如果高峰集中在高灰度值区域(靠近255),说明图像整体偏亮。

(3)双峰分布:

如果灰度直方图有两个明显的峰值,可能表示图像中存在两种主要的灰度区域(例如,背景和目标物体。

灰度分布图的应用:

图像增强:通过调整灰度分布(如直方图均衡化),可以改善图像的对比度和视觉效果。

图像分割:通过分析灰度分布的峰值和谷值,可以确定合适的阈值,用于分割图像中的不同区域。

图像校正:通过观察灰度分布,可以判断图像是否过暗或过亮,并采取相应的校正措施(如伽马变换)

图像点处理定义:

图像点处理是一种对每个像素单独进行操作的处理方式。点处理的核心在于直接对像素的灰度值或颜色值进行变换,而不依赖于像素周围的邻域信息。这种处理方式的特点是像素之间的处理相互独立,因此非常适合并行计算,例如利用GPU加速。

图像点处理可以分为线性点运算和非线性点运算:

线性点运算:

通过线性函数s=ar + b实现,其中r是输入像素值,s是输出像素值,a和b是常数。这种运算可以用于调整图像的亮度和对比度。

非线性点运算:

(1)指数点运算

作用:拓展图像的高灰度级,压缩图像的低灰度级。

(2)对数点运算

作用:扩展图像的低灰度级,压缩图像的高灰度级

(3)对数变换

常用于图像处理中以增强图像的暗部细节。

其基本公式为: s = c log(1 + r)

其中,r 是输入图像的灰度值,s 是输出图像的灰度值,c 是一个常数,用于调整变换后的灰度值范围。

(4)伽马变换

常用于调整图像的对比度和亮度。其基本公式为: s = c × r^γ

其中,r 是输入灰度值,s 是输出灰度值,cγ 是正常数。

γ < 1 时,伽马变换会拉伸低灰度值区域,压缩高灰度值区域,使图像的暗部更亮

γ > 1 时,伽马变换会拉伸高灰度值区域,压缩低灰度值区域,使图像的亮部更亮

相关推荐
向上的车轮3 分钟前
VS Code在AI编辑器关键问题上处理如何?
人工智能·编辑器
沛沛老爹9 分钟前
Web开发者进阶AI:企业级Agent Skills安全策略与合规架构实战
前端·人工智能·架构
说私域9 分钟前
基于AI客服链动2+1模式商城小程序的社群运营策略研究——以千人社群活跃度提升为例
人工智能·微信·小程序·私域运营
大猫子的技术日记30 分钟前
从DALL·E到Seedream:AI文生图技术全景速览与实战指南
人工智能
无bug代码搬运工30 分钟前
文献阅读:Class-incremental Learning for Time Series:Benchmark and Evaluation
人工智能·深度学习·transformer
乾元31 分钟前
智能化侦察:利用 LLM 进行自动化资产暴露面识别与关联
运维·网络·人工智能·网络协议·安全·自动化
lbb 小魔仙32 分钟前
AI工具与编程实践:重塑研发效率的双重引擎AI双擎驱动:工具与编程重构研发全流程的实战指南
人工智能·重构
行业探路者36 分钟前
如何利用二维码提升富媒体展示的效果?
大数据·人工智能·学习·产品运营·软件工程
爱打代码的小林37 分钟前
opencv(边缘检测)
人工智能·opencv·计算机视觉
lizhenning8738 分钟前
语言模型与动词知识库协同创新
人工智能·语言模型·自然语言处理