图像点处理

怎么理解灰度图?

RGB很明显有三个通道
**我们看红色通道,**因为天空中红色含量(R值)最少,因此红色通道中的天空最暗,而因为建筑红色含量(R值)最高,所以红色通道中的建筑最亮。

怎么理解灰度分布图

x轴为灰度值。表示0~255
y轴为像素数量(频率),表示图像中具有特定灰度值的像素数量。

灰度分布图常见典型特征:

(1)平坦分布:

如果灰度直方图在所有灰度值上分布比较均匀(即y轴值变化不大),说明对比度低。

(2)高峰集中在某一部分:

如果高峰集中在低灰度值区域(靠近0),说明图像偏暗。

如果高峰集中在高灰度值区域(靠近255),说明图像整体偏亮。

(3)双峰分布:

如果灰度直方图有两个明显的峰值,可能表示图像中存在两种主要的灰度区域(例如,背景和目标物体。

灰度分布图的应用:

图像增强:通过调整灰度分布(如直方图均衡化),可以改善图像的对比度和视觉效果。

图像分割:通过分析灰度分布的峰值和谷值,可以确定合适的阈值,用于分割图像中的不同区域。

图像校正:通过观察灰度分布,可以判断图像是否过暗或过亮,并采取相应的校正措施(如伽马变换)

图像点处理定义:

图像点处理是一种对每个像素单独进行操作的处理方式。点处理的核心在于直接对像素的灰度值或颜色值进行变换,而不依赖于像素周围的邻域信息。这种处理方式的特点是像素之间的处理相互独立,因此非常适合并行计算,例如利用GPU加速。

图像点处理可以分为线性点运算和非线性点运算:

线性点运算:

通过线性函数s=ar + b实现,其中r是输入像素值,s是输出像素值,a和b是常数。这种运算可以用于调整图像的亮度和对比度。

非线性点运算:

(1)指数点运算

作用:拓展图像的高灰度级,压缩图像的低灰度级。

(2)对数点运算

作用:扩展图像的低灰度级,压缩图像的高灰度级

(3)对数变换

常用于图像处理中以增强图像的暗部细节。

其基本公式为: s = c log(1 + r)

其中,r 是输入图像的灰度值,s 是输出图像的灰度值,c 是一个常数,用于调整变换后的灰度值范围。

(4)伽马变换

常用于调整图像的对比度和亮度。其基本公式为: s = c × r^γ

其中,r 是输入灰度值,s 是输出灰度值,cγ 是正常数。

γ < 1 时,伽马变换会拉伸低灰度值区域,压缩高灰度值区域,使图像的暗部更亮

γ > 1 时,伽马变换会拉伸高灰度值区域,压缩低灰度值区域,使图像的亮部更亮

相关推荐
想你依然心痛2 小时前
视界无界:基于Rokid眼镜的AI商务同传系统开发与实践
人工智能·智能硬件·rokid·ai眼镜·ar技术
Learn Beyond Limits2 小时前
Data Preprocessing|数据预处理
大数据·人工智能·python·ai·数据挖掘·数据处理
shmexon2 小时前
上海兆越亮相无锡新能源盛会,以硬核通信科技赋能“能碳未来”
网络·人工智能
ziwu3 小时前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
北京耐用通信3 小时前
告别“牵一发而动全身”:耐达讯自动化Profibus PA分线器为石化流量计网络构筑安全屏障
人工智能·网络协议·安全·自动化·信息与通信
ziwu3 小时前
海洋生物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
luoganttcc3 小时前
RoboTron-Drive:自动驾驶领域的全能多模态大模型
人工智能·机器学习·自动驾驶
向阳逐梦4 小时前
DC-DC Buck 电路(降压转换器)全面解析
人工智能·算法
xcLeigh4 小时前
AI的提示词专栏:“Prompt Chaining”把多个 Prompt 串联成工作流
人工智能·ai·prompt·提示词·工作流
是店小二呀4 小时前
AI模型练好了却传不出去?这两个工具帮你破局
人工智能