图像点处理

怎么理解灰度图?

RGB很明显有三个通道
**我们看红色通道,**因为天空中红色含量(R值)最少,因此红色通道中的天空最暗,而因为建筑红色含量(R值)最高,所以红色通道中的建筑最亮。

怎么理解灰度分布图

x轴为灰度值。表示0~255
y轴为像素数量(频率),表示图像中具有特定灰度值的像素数量。

灰度分布图常见典型特征:

(1)平坦分布:

如果灰度直方图在所有灰度值上分布比较均匀(即y轴值变化不大),说明对比度低。

(2)高峰集中在某一部分:

如果高峰集中在低灰度值区域(靠近0),说明图像偏暗。

如果高峰集中在高灰度值区域(靠近255),说明图像整体偏亮。

(3)双峰分布:

如果灰度直方图有两个明显的峰值,可能表示图像中存在两种主要的灰度区域(例如,背景和目标物体。

灰度分布图的应用:

图像增强:通过调整灰度分布(如直方图均衡化),可以改善图像的对比度和视觉效果。

图像分割:通过分析灰度分布的峰值和谷值,可以确定合适的阈值,用于分割图像中的不同区域。

图像校正:通过观察灰度分布,可以判断图像是否过暗或过亮,并采取相应的校正措施(如伽马变换)

图像点处理定义:

图像点处理是一种对每个像素单独进行操作的处理方式。点处理的核心在于直接对像素的灰度值或颜色值进行变换,而不依赖于像素周围的邻域信息。这种处理方式的特点是像素之间的处理相互独立,因此非常适合并行计算,例如利用GPU加速。

图像点处理可以分为线性点运算和非线性点运算:

线性点运算:

通过线性函数s=ar + b实现,其中r是输入像素值,s是输出像素值,a和b是常数。这种运算可以用于调整图像的亮度和对比度。

非线性点运算:

(1)指数点运算

作用:拓展图像的高灰度级,压缩图像的低灰度级。

(2)对数点运算

作用:扩展图像的低灰度级,压缩图像的高灰度级

(3)对数变换

常用于图像处理中以增强图像的暗部细节。

其基本公式为: s = c log(1 + r)

其中,r 是输入图像的灰度值,s 是输出图像的灰度值,c 是一个常数,用于调整变换后的灰度值范围。

(4)伽马变换

常用于调整图像的对比度和亮度。其基本公式为: s = c × r^γ

其中,r 是输入灰度值,s 是输出灰度值,cγ 是正常数。

γ < 1 时,伽马变换会拉伸低灰度值区域,压缩高灰度值区域,使图像的暗部更亮

γ > 1 时,伽马变换会拉伸高灰度值区域,压缩低灰度值区域,使图像的亮部更亮

相关推荐
多恩Stone18 分钟前
【ModelScope-1】数据集稀疏检出(Sparse Checkout)来下载指定目录
人工智能·python·算法·aigc
郭庆汝19 分钟前
(七)自然语言处理笔记——Ai医生
人工智能·笔记·自然语言处理
生而为虫26 分钟前
28.Python处理图像
人工智能·python·计算机视觉·pillow·pygame
Dev7z26 分钟前
基于OpenCV和MATLAB的椭圆检测系统的设计与实现
人工智能·opencv·matlab
青春不败 177-3266-052030 分钟前
R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表
人工智能·r语言·生态学·meta分析·统计学·环境科学·农业科学
薛定e的猫咪1 小时前
【论文精读】ICLR 2023 --- 作为离线强化学习强表达能力策略类的扩散策略
人工智能·深度学习·机器学习·stable diffusion
连线Insight1 小时前
当考公遇上AI,粉笔能吸引用户付费吗?
人工智能
●VON1 小时前
开源 vs 商业:主流AI生态概览——从PyTorch到OpenAI的技术格局之争
人工智能·pytorch·开源
乾元2 小时前
AI 在网络工程中的 12 个高频场景深度实战(Cisco / Huawei 双体系)
人工智能
子午2 小时前
【食物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习