深度学习系列76:流式tts的一个简单实现

1. 概述

使用queue,producer不断向queue中添加audio,然后consumer不断从queue中消费audio。

下面的样例使用melo来生成语音,需要先下载melo.tts。模型在https://myshell-public-repo-hosting.s3.amazonaws.com/openvoice/basespeakers/ZH/checkpoint.pth,config在https://myshell-public-repo-hosting.s3.amazonaws.com/openvoice/basespeakers/ZH/config.json。

2. 代码部分

复制代码
from melo import utils
from melo.models import SynthesizerTrn
from melo.split_utils import split_sentences_zh
from melo.download_utils import load_or_download_config, load_or_download_model
from queue import Queue
from threading import Thread
import numpy as np
from pydub import playback
import torch, audiosegment
device = 'mps'
hps = load_or_download_config('ZH', use_hf=True, config_path=None)
num_languages = hps.num_languages
num_tones = hps.num_tones
symbols = hps.symbols
model = SynthesizerTrn(len(symbols),hps.data.filter_length // 2 + 1,hps.train.segment_size // hps.data.hop_length,n_speakers=hps.data.n_speakers,num_tones=num_tones,num_languages=num_languages,**hps.model,).to(device)
model.eval()
symbol_to_id = {s: i for i, s in enumerate(symbols)}
checkpoint_dict = load_or_download_model('ZH', device, use_hf=True, ckpt_path=None)
model.load_state_dict(checkpoint_dict['model'], strict=True)
def play(text):
    texts = text.split('。')
    speaker_id = 1
    def producer(queue):
        for i,t in enumerate(texts):
            bert, ja_bert, phones, tones, lang_ids = utils.get_text_for_tts_infer(t, 'ZH_MIX_EN', hps, device, symbol_to_id)
            with torch.no_grad():
                x_tst = phones.to(device).unsqueeze(0)
                tones = tones.to(device).unsqueeze(0)
                lang_ids = lang_ids.to(device).unsqueeze(0)
                bert = bert.to(device).unsqueeze(0)
                ja_bert = ja_bert.to(device).unsqueeze(0)
                x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
                del phones
                speakers = torch.LongTensor([speaker_id]).to(device)
                audio = model.infer(x_tst,x_tst_lengths,speakers,tones,lang_ids,bert,ja_bert,
                        sdp_ratio=0,noise_scale=0,noise_scale_w=0,length_scale=1,)[0][0, 0].data.cpu().float().numpy()
                del x_tst, tones, lang_ids, bert, ja_bert, x_tst_lengths, speakers
            queue.put(audio)
    
    def consumer(queue):
        while True:
            audio = queue.get()    
            playback.play(audiosegment.from_numpy_array(audio.astype(np.float32),hps.data.sampling_rate))
            queue.task_done()
            
    q = Queue()
    q.put(np.zeros(int(hps.data.sampling_rate * 0.1)))
    t1 = Thread(target = producer, args=(q,))
    t2 = Thread(target=consumer, args=(q,))
    t2.daemon = True  # 线程2是无限循环需要设置守护线程以便主线程退出
    
    t1.start()
    t2.start()
    
    t1.join()  # 等待所有项被生产
    q.join()  # 等待所有项被消费

text = "..."
play(text)
相关推荐
cooldream20091 分钟前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟3 分钟前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播34 分钟前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训39 分钟前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹1 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55182 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora2 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大2 小时前
关于前馈神经网络
人工智能·深度学习·神经网络
2的n次方_2 小时前
从0到1打造专属数字人:魔珐星云SDK接入实战演示
人工智能·具身智能·魔珐星云
roman_日积跬步-终至千里2 小时前
【模式识别与机器学习】机器学习练习题集 - 答案与解析
人工智能·机器学习