机器学习-K近邻算法

文章目录

  • [一. 数据集介绍](#一. 数据集介绍)
    • [Iris plants dataset](#Iris plants dataset)
  • [二. 代码](#二. 代码)
  • [三. k值的选择](#三. k值的选择)

一. 数据集介绍

鸢尾花数据集

鸢尾花Iris Dataset数据集是机器学习领域经典数据集,鸢尾花数据集包含了150条鸢尾花信息,每50条取自三个鸢尾花中之一:Versicolour、Setosa和Virginica

每个花的特征用如下属性描述:

python 复制代码
from sklearn.datasets import load_iris
# 1. 准备数据集
iris = load_iris()
iris.data
python 复制代码
iris.target
复制代码
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
python 复制代码
print(iris.DESCR)

Iris plants dataset

Data Set Characteristics:

复制代码
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
    - sepal length in cm
    - sepal width in cm
    - petal length in cm
    - petal width in cm
    - class:
            - Iris-Setosa
            - Iris-Versicolour
            - Iris-Virginica
            
:Summary Statistics:

============== ==== ==== ======= ===== ====================
                Min  Max   Mean    SD   Class Correlation
============== ==== ==== ======= ===== ====================
sepal length:   4.3  7.9   5.84   0.83    0.7826
sepal width:    2.0  4.4   3.05   0.43   -0.4194
petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)
============== ==== ==== ======= ===== ====================

:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

二. 代码

python 复制代码
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

if __name__ == '__main__':
    # 1. 加载数据集  
    iris = load_iris() #通过iris.data 获取数据集中的特征值  iris.target获取目标值

    # 2. 数据标准化
    transformer = StandardScaler()
    x_ = transformer.fit_transform(iris.data) # iris.data 数据的特征值

    # 3. 模型训练
    estimator = KNeighborsClassifier(n_neighbors=3) # n_neighbors 邻居的数量,也就是Knn中的K值
    estimator.fit(x_, iris.target) # 调用fit方法 传入特征和目标进行模型训练

    # 4. 利用模型预测
    result = estimator.predict(x_) 
    print(result)
复制代码
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

三. k值的选择

KNN算法的关键是,是K值的选择,下图中K=3,属于红色三角形,K=5属于蓝色的正方形。这个时候就是K选择困难的时候。

KNN 算法中K值过大、过小都不好, 一般会取一个较小的值

采用交叉验证法(把训练数据再分成:训练集和验证集)来选择最优的K值。

python 复制代码
#加载数据集
x,y = load_iris(return_X_y=True)
#数据标准化
scaler = StandardScaler()
x_scaled = scaler.fit_transform(x)
#划分数据集
x_train,x_test,y_train,y_test = train_test_split(x_scaled,y,test_size=0.2,random_state=0)
#创建网络搜索对象
knn = KNeighborsClassifier()
param_grid = {'n_neighbors':[1, 3, 5, 7]}
estimator = GridSearchCV(knn, param_grid, cv=5)
#训练模型
estimator.fit(x_train,y_train)
#输出最优参数
#打印最优参数(验证集)
print('最优参数组合:', estimator.best_params_, '最好得分:', estimator.best_score_)

#测试集评估模型(测试集)
print('测试集准确率:', estimator.score(x_test, y_test))
复制代码
最优参数组合: {'n_neighbors': 7} 最好得分: 0.9416666666666667
测试集准确率: 1.0
相关推荐
(; ̄ェ ̄)。几秒前
机器学习入门(十六)集成学习,GBDT,XGBoost
人工智能·机器学习·集成学习
weixin_549808366 分钟前
2026中国AI招聘系统选型指南:从“效率工具”到“智能体协同”的跃迁
人工智能
zlt200010 分钟前
从Prompt工程到Skill工程:Agent Skills开放标准彻底改变了AI协作方式
人工智能·ai·agent skill
咚咚王者13 分钟前
人工智能之核心技术 深度学习 第九章 框架实操(PyTorch / TensorFlow)
人工智能·pytorch·深度学习
天空属于哈夫克314 分钟前
外部群自动化:将 RPA 从“群发工具”进化为私域“情报感知系统”
人工智能·自然语言处理
大模型最新论文速读17 分钟前
NCoTS:搜索最优推理路径,改进大模型推理效果
人工智能·深度学习·机器学习·语言模型·自然语言处理
偷吃的耗子21 分钟前
【CNN算法理解】:MNIST手写数字识别训练过程
算法·机器学习·cnn
神经蛙没头脑26 分钟前
2026年AI产品榜·全球总榜, 2月3日更新
人工智能·神经网络·机器学习·计算机视觉·语言模型·自然语言处理·自动驾驶
微光闪现28 分钟前
实测分享:夏杰语音性能资源深度解析,轻量高效适配全场景
人工智能·语音识别
彬鸿科技31 分钟前
bhSDR Studio/Matlab 入门指南(四):8 通道单音同步收发实验界面全解析
人工智能·matlab·软件无线电