利用机器学习创建基于位置的推荐程序

推荐系统被广泛应用于不同的应用程序中,用于预测用户对产品或服务的偏好或评价。在过去的几分钟或几小时里,你很可能在网上遇到过或与某种类型的推荐系统进行过互动。这些推荐系统有不同的类型,其中最突出的包括基于内容的过滤和协作过滤。在本文中,我们将研究基于地理位置的推荐,我们特别关注地理位置,以便利用用户的地理位置提供更相关的推荐。

为了说明基于位置的推荐器的关键方面,我们将使用 K-Means 算法和来自 Kaggle 的 Yelp 数据集执行一个简单的基于位置的推荐。数据是 JSON 文件,可以用 pandas 轻松读取。

下表显示了数据集的前 5 行。表中提供了企业坐标、评级星级和每家企业的评论数量。

探索性数据分析(EDA)与预处理

在本节中,我们将探索并预处理数据集。该数据集包含来自 yelp 用户的评论,并包含许多类别。为了简化我们的分析和对推荐模型的解释,我们将把重点放在餐馆上,您也可以选择您感兴趣的其他类别。

我们首先通过过滤所有包含 "餐馆 "一词的业务来创建一个餐馆数据帧。然后,我们绘制出餐厅星级从 1 星到 5 星的分布图。从图中可以清楚地看出,大多数餐厅的星级为 4.0 或 3.5 星,只有少数餐厅的星级为 5.0 星。

我们还可以根据评论数和星级创建一个排序数据框架,并将数据集中排名前 20 位的餐厅可视化。

这里不仅要根据星级对餐厅进行排序,还要根据餐厅的评论数量进行排序。以下是数据集中所有排名前 20 的餐厅的分布图。

最后,在进入 K-Means 聚类和基于位置的推荐之前,让我们也探索一下这些餐厅的位置,并将其可视化为一张地图。我们将使用 Plotly Express 库,该库提供了一种灵活简便的方法,可以用漂亮的底图绘制地理数据。

为了定制我们的推荐系统,我们将只关注内华达州的拉斯维加斯,因为该数据集中的餐厅数量最多。

我们为拉斯维加斯的所有餐馆绘制了放大地图。下面是拉斯维加斯所有餐厅的地图。地图的颜色基于餐厅的星级数量,而大小则表示该餐厅的评论数量。如您所见,评价较高的餐厅都集中在市中心。

K-Means 聚类

在执行 K-Means 聚类算法之前,我们首先要确定数据集的最佳聚类数量。在这里,我们使用了一种名为 Elbow 方法的技术。

弯头法可以帮助我们确定合适的聚类数量。这并不能给出准确的聚类数量,但有可能帮助我们选择聚类的数量。从下图可以看出,它有多个弯头。

在肘法的帮助下,我们选择了 5 个聚类,并对坐标执行 K-Means 聚类算法。我们还在 lasVegas 数据帧中填充了一列新内容。

最后,我们绘制了 K-Means 算法的聚类散点图。该图清晰地显示了算法的输出结果,有 5 个聚类。

基于位置的推荐

在本节中,我们将把 K 均值聚类和餐厅评级结合起来,根据用户的位置推荐餐厅。首先,让我们创建一个数据帧,根据评论数和星级对拉斯维加斯的餐厅进行排序。我们将其称为 DataFrametop_restaurants_lasVegas。

我们准备创建一个根据用户位置推荐餐厅的函数。我们创建一个根据用户位置推荐餐厅的函数。

在这里,我们的函数将接收经纬度和数据帧。函数首先会预测坐标属于哪个集群,然后进一步将数据帧限制在该集群中,并返回该集群中排名前 5 的餐馆。

这个函数很简单,只接受坐标,但我们可以进一步开发,接受其他输入,如地址或邮编。这需要一些地理编码应用程序,所以现在只需说明基于位置的推荐功能就足够了。在使用推荐函数之前,让我们先创建一个测试数据帧。

现在,我们可以将数据帧中的任何用户作为输入,使用我们的推荐函数来测试我们基于位置的简单推荐的功能。请记住,这些测试数据只是为了方便,推荐函数可以直接接受任何给定的坐标。

对于第一个用户,K-Means 算法会预测聚类,并找出该聚类中排名前 5 的餐厅并进行推荐。红点为用户所在位置,蓝点为推荐餐厅。

让我们再举一个例子,本例中的用户 3。我们的 "recommend_restaurant "函数会再次预测该用户所属的群组,并从中选出该群组中排名前 5 的餐厅。

结论

在本教程中,我们使用 Yelp 数据集演示了基于位置的 python 推荐。我们使用餐馆来展示基于位置的推荐应用。我们的推荐系统使用基于餐厅坐标的 K-Means 聚类,并且只考虑餐厅的评级(评级数和星级)来推荐餐厅。我们还可以考虑餐厅的类型来定制推荐。这一点还可以进一步发展,纳入其他输入方法,如地址或邮政编码。最后,虽然 K-means 聚类限制了推荐餐厅的范围,但我们的推荐并没有明确考虑用户与推荐餐厅之间的距离。

相关推荐
渡我白衣1 小时前
多路转接之epoll:理论篇
人工智能·神经网络·网络协议·tcp/ip·自然语言处理·信息与通信·tcpdump
明月照山海-1 小时前
机器学习周报二十八
人工智能·机器学习
weixin_437497777 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
喝拿铁写前端7 小时前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员
goodfat7 小时前
Win11如何关闭自动更新 Win11暂停系统更新的设置方法【教程】
人工智能·禁止windows更新·win11优化工具
北京领雁科技7 小时前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪7 小时前
河南建站系统哪个好
大数据·人工智能·python
清月电子8 小时前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z8 小时前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人8 小时前
AI浪潮下,前端路在何方
前端·人工智能·ai编程