decison tree 决策树

信息增益

信息增益描述的是在分叉过程中获得的熵减,信息增益即熵减。

熵减可以用来决定什么时候停止分叉,当熵减很小的时候你只是在不必要的增加树的深度,并且冒着过拟合的风险

决策树训练(构建)过程

离散值特征处理:One-Hot编码

一个具有 N 个取值的离散特征可以转换为 N 个二进制特征,每个二进制特征对应一个可能的取值。

连续值特征处理:

计算不同阈值的熵减,选取熵减最大的阈值作为分叉阈值

回归树

回归树用来预测一个连续值,训练时跟决策树的区别是训练时最小化方差,而决策树是最大化熵减

集成树

单个决策树的一个缺点是对数据的变化比较敏感,我们需要尝试降低树的敏感度提高鲁棒性,此时我们可以构建集成树,即一组决策树

有放回抽样(sample with replacement)

从训练集中随机取出一个之后放回,确保它在后续抽取中仍有可能被再次抽到。

随机森林

利用有放回抽样,我们可以连续抽样并组成新的训练集,使用新的训练集训练一棵新的树。重复该行为可以生成多棵树,称为随机森林。

如果有 n 个特征,一般要生成 棵树

XGBoost

对随机森林的提升:从第二次迭代开始,不是等概率随机抽样,而是让上一轮预测错误的样本有更大的概率被抽样到,以类似错误修正的方式训练树。

决策树与神经网络的选择

决策树在结构化数据下可用,非结构化数据不推荐;可解释

相关推荐
ShiinaMashirol3 小时前
代码随想录打卡|Day27(合并区间、单调递增的数字、监控二叉树)
java·算法
wuqingshun3141595 小时前
蓝桥杯 5. 交换瓶子
数据结构·c++·算法·职场和发展·蓝桥杯
Demons_kirit5 小时前
Leetcode 2845 题解
算法·leetcode·职场和发展
AI军哥6 小时前
MySQL8的安装方法
人工智能·mysql·yolo·机器学习·deepseek
余弦的倒数6 小时前
知识蒸馏和迁移学习的区别
人工智能·机器学习·迁移学习
Allen Bright6 小时前
【机器学习-线性回归-2】理解线性回归中的连续值与离散值
人工智能·机器学习·线性回归
adam_life6 小时前
http://noi.openjudge.cn/——2.5基本算法之搜索——200:Solitaire
算法·宽搜·布局唯一码
weixin_贾6 小时前
最新AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
python·机器学习·植被参数·遥感反演
我想进大厂7 小时前
图论---朴素Prim(稠密图)
数据结构·c++·算法·图论
我想进大厂7 小时前
图论---Bellman-Ford算法
数据结构·c++·算法·图论