自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
import pandas as pd
import numpy as np
class CustomDataset(Dataset):
    def __init__(self, data, labels, transform=None):
        self.data = data
        self.labels = labels
        self.transform = transform

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        sample = self.data[idx]
        label = self.labels[idx]
        if self.transform:
            sample = self.transform(sample)
        return sample, label
# 示例数据
data = np.random.rand(100, 10)  # 100个样本,每个样本10个特征
labels = np.random.randint(0, 2, 100)  # 二分类标签

# 转换为torch的Tensor
data = torch.tensor(data, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.long)

# 创建数据集和数据加载器
dataset = CustomDataset(data, labels)
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)


class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, 1)

    def forward(self, x):
        out = torch.sigmoid(self.linear(x))
        return out


# 参数设置
input_dim = data.shape[1]
num_epochs = 20
learning_rate = 0.01

# 初始化模型、损失函数和优化器
model = LogisticRegression(input_dim)
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

# 训练模型
for epoch in range(num_epochs):
    for inputs, labels in dataloader:
        # 将标签转换为浮点型
        labels = labels.float().unsqueeze(1)

        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# 保存模型权重和架构
torch.save(model.state_dict(), 'logistic_regression_model.pth')

# 加载模型
loaded_model = LogisticRegression(input_dim)
loaded_model.load_state_dict(torch.load('logistic_regression_model.pth'))
loaded_model.eval()  # 切换为评估模式

# 进行预测
with torch.no_grad():
    sample = torch.tensor(np.random.rand(1, 10), dtype=torch.float32)  # 一个新的样本
    prediction = loaded_model(sample)
    print(f'Prediction: {prediction.item()}')
相关推荐
IT古董23 分钟前
【漫话机器学习系列】255.独立同分布(Independent and Identically Distributed,简称 IID)
人工智能·机器学习
fytianlan23 分钟前
机器学习 day6 -线性回归练习
人工智能·机器学习·线性回归
算家云1 小时前
通义千问席卷日本!开源界“卷王”阿里通义千问成为日本AI发展新基石
人工智能·开源·通义千问·算家云·国产ai·租算力,到算家云·日本ai
ai产品老杨1 小时前
AI赋能安全生产,推进数智化转型的智慧油站开源了。
前端·javascript·vue.js·人工智能·ecmascript
明月醉窗台2 小时前
[20250507] AI边缘计算开发板行业调研报告 (2024年最新版)
人工智能·边缘计算
Blossom.1182 小时前
低代码开发:开启软件开发的新篇章
人工智能·深度学习·安全·低代码·机器学习·计算机视觉·数据挖掘
安特尼3 小时前
招行数字金融挑战赛数据赛道赛题一
人工智能·python·机器学习·金融·数据分析
带娃的IT创业者3 小时前
《AI大模型应知应会100篇》第59篇:Flowise:无代码搭建大模型应用
人工智能
数澜悠客3 小时前
AI与IoT携手,精准农业未来已来
人工智能·物联网
极小狐3 小时前
如何构建容器镜像并将其推送到极狐GitLab容器镜像库?
开发语言·数据库·机器学习·gitlab·ruby