自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
import pandas as pd
import numpy as np
class CustomDataset(Dataset):
    def __init__(self, data, labels, transform=None):
        self.data = data
        self.labels = labels
        self.transform = transform

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        sample = self.data[idx]
        label = self.labels[idx]
        if self.transform:
            sample = self.transform(sample)
        return sample, label
# 示例数据
data = np.random.rand(100, 10)  # 100个样本,每个样本10个特征
labels = np.random.randint(0, 2, 100)  # 二分类标签

# 转换为torch的Tensor
data = torch.tensor(data, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.long)

# 创建数据集和数据加载器
dataset = CustomDataset(data, labels)
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)


class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, 1)

    def forward(self, x):
        out = torch.sigmoid(self.linear(x))
        return out


# 参数设置
input_dim = data.shape[1]
num_epochs = 20
learning_rate = 0.01

# 初始化模型、损失函数和优化器
model = LogisticRegression(input_dim)
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

# 训练模型
for epoch in range(num_epochs):
    for inputs, labels in dataloader:
        # 将标签转换为浮点型
        labels = labels.float().unsqueeze(1)

        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# 保存模型权重和架构
torch.save(model.state_dict(), 'logistic_regression_model.pth')

# 加载模型
loaded_model = LogisticRegression(input_dim)
loaded_model.load_state_dict(torch.load('logistic_regression_model.pth'))
loaded_model.eval()  # 切换为评估模式

# 进行预测
with torch.no_grad():
    sample = torch.tensor(np.random.rand(1, 10), dtype=torch.float32)  # 一个新的样本
    prediction = loaded_model(sample)
    print(f'Prediction: {prediction.item()}')
相关推荐
子午19 小时前
【食物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Dev7z19 小时前
基于深度学习和图像处理的药丸计数与分类系统研究
图像处理·人工智能·深度学习
Mxsoft61919 小时前
某次联邦学习训练模型不准,发现协议转换字段映射错,手动校验救场!
人工智能
shayudiandian20 小时前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花20 小时前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程
子午20 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
模型启动机20 小时前
Langchain正式宣布,Deep Agents全面支持Skills,通用AI代理的新范式?
人工智能·ai·langchain·大模型·agentic ai
Python私教20 小时前
别让 API Key 裸奔:基于 TRAE SOLO 的大模型安全配置最佳实践
人工智能
Python私教20 小时前
Vibe Coding 体验报告:我让 TRAE SOLO 替我重构了 2000 行屎山代码,结果...
人工智能
prog_610320 小时前
【笔记】和各大AI语言模型写项目——手搓SDN后得到的经验
人工智能·笔记·语言模型