自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
import pandas as pd
import numpy as np
class CustomDataset(Dataset):
    def __init__(self, data, labels, transform=None):
        self.data = data
        self.labels = labels
        self.transform = transform

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        sample = self.data[idx]
        label = self.labels[idx]
        if self.transform:
            sample = self.transform(sample)
        return sample, label
# 示例数据
data = np.random.rand(100, 10)  # 100个样本,每个样本10个特征
labels = np.random.randint(0, 2, 100)  # 二分类标签

# 转换为torch的Tensor
data = torch.tensor(data, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.long)

# 创建数据集和数据加载器
dataset = CustomDataset(data, labels)
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)


class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, 1)

    def forward(self, x):
        out = torch.sigmoid(self.linear(x))
        return out


# 参数设置
input_dim = data.shape[1]
num_epochs = 20
learning_rate = 0.01

# 初始化模型、损失函数和优化器
model = LogisticRegression(input_dim)
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

# 训练模型
for epoch in range(num_epochs):
    for inputs, labels in dataloader:
        # 将标签转换为浮点型
        labels = labels.float().unsqueeze(1)

        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# 保存模型权重和架构
torch.save(model.state_dict(), 'logistic_regression_model.pth')

# 加载模型
loaded_model = LogisticRegression(input_dim)
loaded_model.load_state_dict(torch.load('logistic_regression_model.pth'))
loaded_model.eval()  # 切换为评估模式

# 进行预测
with torch.no_grad():
    sample = torch.tensor(np.random.rand(1, 10), dtype=torch.float32)  # 一个新的样本
    prediction = loaded_model(sample)
    print(f'Prediction: {prediction.item()}')
相关推荐
Blossom.1183 分钟前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn1 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer1 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic2 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿2 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天2 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU3 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec3 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子3 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study3 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉