【数据结构】 并查集 + 路径压缩与按秩合并 python

目录


前言

并查集的基本实现通常使用森林来表示不同的集合,每个集合用一棵树表示,树的每个节点有一个指向其父节点的指针。

如果一个节点是它自己的父节点,那么它就是该集合的代表(称为根节点)。


模板

P3367 【模板】并查集 https://www.luogu.com.cn/problem/P3367

题目描述

如题,现在有一个并查集,你需要完成合并和查询操作。

输入格式

第一行包含两个整数 N , M N,M N,M ,表示共有 N N N 个元素和 M M M 个操作。

接下来 M M M 行,每行包含三个整数 Z i , X i , Y i Z_i,X_i,Y_i Zi,Xi,Yi 。

当 Z i = 1 Z_i=1 Zi=1 时,将 X i X_i Xi 与 Y i Y_i Yi 所在的集合合并。

当 Z i = 2 Z_i=2 Zi=2 时,输出 X i X_i Xi 与 Y i Y_i Yi 是否在同一集合内,是的输出
Y ;否则输出 N

输出格式

对于每一个 Z i = 2 Z_i=2 Zi=2 的操作,都有一行输出,每行包含一个大写字母,为 Y 或者 N

**样例输入 **

复制代码
4 7
2 1 2
1 1 2
2 1 2
1 3 4
2 1 4
1 2 3
2 1 4

样例输出

复制代码
N
Y
N
Y

提示

对于 15 % 15\% 15% 的数据, N ≤ 10 N \le 10 N≤10, M ≤ 20 M \le 20 M≤20。

对于 35 % 35\% 35% 的数据, N ≤ 100 N \le 100 N≤100, M ≤ 1 0 3 M \le 10^3 M≤103。

对于 50 % 50\% 50% 的数据, 1 ≤ N ≤ 1 0 4 1\le N \le 10^4 1≤N≤104, 1 ≤ M ≤ 2 × 1 0 5 1\le M \le 2\times 10^5 1≤M≤2×105。

对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 2 × 1 0 5 1\le N\le 2\times 10^5 1≤N≤2×105, 1 ≤ M ≤ 1 0 6 1\le M\le 10^6 1≤M≤106, 1 ≤ X i , Y i ≤ N 1 \le X_i, Y_i \le N 1≤Xi,Yi≤N, Z i ∈ { 1 , 2 } Z_i \in \{ 1, 2 \} Zi∈{1,2}。


朴素实现

code:

python 复制代码
# 在集合中查找元素的根节点
def find(x):
    if x != pre[x]:
        return find(pre[x])
    return x


# 将两个集合合并为一个集合
def union(x, y, pre):
    x_root = find(x)
    y_root = find(y)
    pre[x_root] = y_root


n, m = map(int, input().split())
pre = [0] * (n + 1)
for i in range(n):
    pre[i] = i  # 初始化
for _ in range(m):
    op, x, y = map(int, input().split())
    if op == 1:
        union(x, y, pre)
    else:
        if find(x) == find(y):
            print('Y')
        else:
            print('N')

事实证明:我们需要进行时间上的优化


路径压缩

由于在查询过程中只关心根结点是什么,所以我们可以在在集合在查找元素的同时,把集合中所有的元素都直接指向根节点,减少查找的时间

示例code

python 复制代码
def find(x):
    if pre[x] != x:
        pre[x] = find(pre[x])  # 在回溯时进行路径压缩
    return pre[x]

tips:可能会破坏原本的结构


按秩合并

之前我们在合并时,是随机合并两个集合

虽然都能得到正确的结果,但存在时间复杂度的差异

怎样降低时间复杂度呢?

通过按秩合并(启发式合并)

"秩"可以理解为树的高度或树的节点数 这两种方式
在合并两棵树时,总是把较矮的树挂到较高的树上,节点较小的树挂在节点较多的树上
这种策略有助于保持树的平衡,从而降低查找操作的时间复杂度。

怎么实现?用一个数组记录每个集合的高度或节点数


按树高为秩

示例:

python 复制代码
# 将两个集合合并为一个集合
def union(x, y):
    x_root = find(x)
    y_root = find(y)
    if x_root != y_root:
        # 谁高,谁就作为根节点
        if rank[x_root] > rank[y_root]:
            pre[y_root] = x_root
        elif rank[x_root] < rank[y_root]:
            pre[x_root] = y_root
        else:
            pre[x_root] = y_root
            rank[y_root] += 1
# 合并是把小的树直接接到根节点上,所以只有两颗树的高度相等的时候合并后高度才会增加

按节点数为秩

示例:

python 复制代码
# 将两个集合合并为一个集合
def union(x, y):
    x_root = find(x)
    y_root = find(y)
    if x_root != y_root:
        # 谁的节点数多,谁就作为根节点
        if size[x_root] > size[y_root]:
            pre[y_root] = x_root
            size[x_root] += size[y_root]
        else:
            pre[x_root] = y_root
            size[y_root] += size[x_root]

题解code1(路径压缩+按节点数为秩合并):

python 复制代码
# 在集合中查找元素的根节点
def find(x):
    global pre
    if pre[x] != x:
        pre[x] = find(pre[x])  # 在回溯时进行路径压缩
    return pre[x]


# 将两个集合合并为一个集合
def union(x, y):
    global pre, size
    x_root = find(x)
    y_root = find(y)
    if x_root != y_root:
        # 谁的节点数多,谁就作为根节点
        if size[x_root] > size[y_root]:
            pre[y_root] = x_root
            size[x_root] += size[y_root]
        else:
            pre[x_root] = y_root
            size[y_root] += size[x_root]


n, m = map(int, input().split())
pre = list(range(n + 1))  # 初始化pre数组
size = [1] * (n + 1)  # 初始化size数组
for _ in range(m):
    op, x, y = map(int, input().split())
    if op == 1:
        union(x, y)
    else:
        if find(x) == find(y):
            print('Y')
        else:
            print('N')

路径压缩与按节点大小合并完全兼容


题解code2(按树高为秩合并):

python 复制代码
# 在集合中查找元素的根节点
def find(x):
    global pre
    if pre[x] != x:
        pre[x] = find(pre[x])  # 在回溯时进行路径压缩
    return pre[x]

# 将两个集合合并为一个集合
def union(x, y):
    global pre, rank
    x_root = find(x)
    y_root = find(y)
    if x_root != y_root:
        # 谁高,谁就作为根节点
        if rank[x_root] > rank[y_root]:
            pre[y_root] = x_root
        elif rank[x_root] < rank[y_root]:
            pre[x_root] = y_root
        else:
            pre[x_root] = y_root
            rank[y_root] += 1
# 合并是把小的树直接接到根节点上,所以只有两颗树的高度相等的时候合并后高度才会增加


n, m = map(int, input().split())
pre = list(range(n + 1))  # 初始化pre数组
rank = [1] * (n + 1)  # 初始化rank数组
for _ in range(m):
    op, x, y = map(int, input().split())
    if op == 1:
        union(x, y)
    else:
        if find(x) == find(y):
            print('Y')
        else:
            print('N')

路径压缩不完全与按树高合并兼容,因为路径压缩可以改变树的高度。


总结

并查集(Union-Find 或 Disjoint Set Union, DSU)是一种数据结构,主要用于处理一些不相交集合的合并及查询问题。


如果有更多问题或需要进一步的帮助,可以在评论区留言讨论哦!
如果喜欢的话,请给博主点个关注 谢谢

相关推荐
এ᭄画画的北北5 分钟前
力扣-49.字母异位词分组
算法·leetcode
设计师小聂!5 分钟前
力扣热题100-------169.多数元素
java·数据结构·算法·leetcode·多数元素
10 分钟前
LeetCode Hot 100 买卖股票的最佳时机
算法·leetcode·职场和发展
艾莉丝努力练剑20 分钟前
【数据结构与算法】顺序表和链表、栈和队列、二叉树、排序等数据结构的完整代码收录
c语言·数据结构·学习·链表
海绵波波10727 分钟前
基于OpenCV的cv2.solvePnP方法实现头部姿态估计
人工智能·opencv·算法
赴33528 分钟前
机器学习 集成学习之随机森林
人工智能·python·随机森林·机器学习·集成学习·sklearn·垃圾邮件判断
站大爷IP37 分钟前
掌握这五个Python核心知识点,编程效率翻倍!
python
星座5281 小时前
最新基于Python科研数据可视化实践技术
python·信息可视化·可视化·数据可视化
DolphinDB1 小时前
基于 CEP 引擎的算法拆单与调度实践—基础篇
算法