1、介绍
Fluxgym训练非常方便,只需要更改一个配置文件内容即可。训练时也不需要提前进行图片裁剪、打标等前置工作。
本文章是介绍在16G以下显存下训练Flux模型的方法。
2、部署项目
(1)下载Fluxgym 和 kohya-ss/sd-scripts
bash
git clone https://github.com/cocktailpeanut/fluxgym
cd fluxgym
git clone -b sd3 https://github.com/kohya-ss/sd-scripts
完成之后的文件夹结构应该如下所示:
bash
/fluxgym
app.py
requirements.txt
sd-scripts/
(2)创建虚拟环境fluxgym
使用conda创建,
bash
conda create -n fluxgym python=3.10
conda activate fluxgym
(3)安装python依赖项
进入sd-scripts文件夹,安装依赖项
bash
cd sd-scripts
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
完成之后返回根文件夹(fluxgym),修改requirements.txt文件,将huggingface.co改为hf-mirror.com:
然后安装依赖项:
bash
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
(4)安装pytorch Nightly
bash
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
3、启动项目
指定server_name 和 server_port,启动服务。
cs
cd fluxgym
export GRADIO_SERVER_NAME=0.0.0.0
export GRADIO_SERVER_PORT=16080
python app.py
启动成功的日志如下:
打开页面后显示如下:
4、训练模型
(1)模型选择
fluxgym默认支持flux-dev / flux-schnell / bdsqlsz/flux1-dev2pro-single 三种flux模型。
该信息在models.yaml文件里。
不过文件中指定的model全都是大于20G的,在16G显存中无法训练。
我们可以使用flux1-dev-fp8.safetensors模型,链接如下:
F.1-dev/fp8/NF4/GGUF-所需模型文件包-Other-墨幽-LiblibAI
(2)下载模型
该文件比较大,假如公司网络限速的话,可以直接获取下载地址,在linux服务器上下载。
Chrome浏览器上获取下载源地址的方法:
首先点击那14G文件进行下载
然后在浏览器上输入chrome://net-export/,单击开始记录日志,隔个5秒钟左右关闭记录,查看日志,找到liblibai-online.liblib.cloud的链接地址。
最后在linux服务器上直接通过wget命令进行下载。
注意这个是zip包,不是模型文件!!!下载之后需要通过unzip命令解压缩后才能使用。
下载中的日志:
然后在linux上通过wget命令下载该文件。
通过tail -f wget-log.4可以下载进度:
下载完毕后,通过mv命令修改为zip后缀的文件。
然后通过unzip命令解压文件。
然后把里面的文件放到fluxgym对应的目录之下:
mv flux1-dev-fp8.safetensors xx/fluxgym/models/unet
mv clip_l.safetensors xx/fluxgym/models/clip
mv t5xxl_fp8_e4m3fn.safetensors xx/fluxgym/models/clip
mv ae.sft xx/fluxgym/models/vae
修改app.py文件:
将文件中所有的t5xxl_fp16.safetensors替换为t5xxl_fp8_e4m3fn.safetensors。
(3)修改models.yaml文件
在末尾添加如下内容:
flux1-dev-fp8:
repo: .
base: .
license: other
license_name: flux1-dev-fp8-license
file: flux1-dev-fp8.safetensors
然后重新启动项目。
(4)启动训练
1)基本设置
- The name of your LoRA:设置Lora的名称
- Trigger word/sentence:lora的触发词,结尾处需要增加一个英文的逗号
- Base model:基模,选择较小的那个模型
- VRAM:选择12G
- repeat trains per image:修改为1,默认为10,但是10的效果不一定比1好
上传图片,然后再点击"Add AI captions with Florence-2",生成图片对应的提示词。首次生成时会自动下载模型,模型大概1.5G。
- Max Train Expochs:最多的训练轮次,假如提前收敛则会提前结束。
- Expected training steps:自动计算出来的训练步数
- Sample Image Prompts:提示词样例,不影响训练结果
- Sample Image Every N Steps:不要修改该值
- Resize dataset images:训练模型结果对应的分辨率。
注意(使用阶段的剧透):即使Resize dataset images设置为512*512,但是如果空潜空间图像设置为1024*1024,那么最终生成的还是1024*1024的图像。
2)高级选项
点击Advanced options打开高级选项:
- save_every_n_epochs:每N次保存一次模型,总轮次不多的话填1
- console_log_file:日志文件位置,比如:"/data/work/xiehao/fluxgym/log2/2253",记得加双引号。
- console_log_simple:打勾
- fp8_base_unet:打勾,因为我们使用的是fp8的模型
3)训练过程
29张图片,以上参数,会占用10G的显存。
29张图片,768分辨率,会占用12G的显存。
运行中观察Volatile GPU-Util的值,需要大于0,一般是99%或100%。
如果是0,说明停止训练了。
训练完整日志如下:
[2025-01-27 21:26:51] [INFO] Running bash "/data/work/xiehao/fluxgym/outputs/girl-flux/train.sh"
[2025-01-27 21:27:00] [INFO] 2025-01-27 21:27:00 INFO highvram is enabled / highvramが有効です train_util.py:4199
[2025-01-27 21:27:00] [INFO] WARNING cache_latents_to_disk is enabled, so cache_latents is also enabled / cache_latents_to_diskが有効なため、cache_latentsを有効にします train_util.py:4216
[2025-01-27 21:27:00] [INFO] /data/work/anaconda3/envs/fluxgym/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
[2025-01-27 21:27:00] [INFO] warnings.warn(
[2025-01-27 21:27:01] [INFO] You are using the default legacy behaviour of the <class 'transformers.models.t5.tokenization_t5.T5Tokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
[2025-01-27 21:27:01] [INFO] 0%| | 0/29 [00:00<?, ?it/s]
100%|██████████| 29/29 [00:00<00:00, 125655.80it/s]
[2025-01-27 21:27:01] [INFO] read caption: 0%| | 0/29 [00:00<?, ?it/s]
read caption: 100%|██████████| 29/29 [00:00<00:00, 4335.74it/s]
[2025-01-27 21:27:01] [INFO] 0%| | 0/29 [00:00<?, ?it/s]
100%|██████████| 29/29 [00:00<00:00, 679524.11it/s]
[2025-01-27 21:27:01] [INFO] accelerator device: cuda
[2025-01-27 21:27:01] [INFO] FLUX: Block swap enabled. Swapping 18 blocks, double blocks: 9, single blocks: 18.
[2025-01-27 21:27:33] [INFO] import network module: networks.lora_flux
[2025-01-27 21:27:33] [INFO] 0%| | 0/29 [00:00<?, ?it/s]
100%|██████████| 29/29 [00:00<00:00, 6469.94it/s]
[2025-01-27 21:27:35] [INFO] 0%| | 0/29 [00:00<?, ?it/s]
100%|██████████| 29/29 [00:00<00:00, 3760.78it/s]
[2025-01-27 21:27:41] [INFO] FLUX: Gradient checkpointing enabled. CPU offload: False
[2025-01-27 21:27:41] [INFO] prepare optimizer, data loader etc.
[2025-01-27 21:27:41] [INFO] override steps. steps for 6 epochs is / 指定エポックまでのステップ数: 174
[2025-01-27 21:27:41] [INFO] enable fp8 training for U-Net.
[2025-01-27 21:28:03] [INFO] running training / 学習開始
[2025-01-27 21:28:03] [INFO] num train images * repeats / 学習画像の数×繰り返し回数: 29
[2025-01-27 21:28:03] [INFO] num reg images / 正則化画像の数: 0
[2025-01-27 21:28:03] [INFO] num batches per epoch / 1epochのバッチ数: 29
[2025-01-27 21:28:03] [INFO] num epochs / epoch数: 6
[2025-01-27 21:28:03] [INFO] batch size per device / バッチサイズ: 1
[2025-01-27 21:28:03] [INFO] gradient accumulation steps / 勾配を合計するステップ数 = 1
[2025-01-27 21:28:03] [INFO] total optimization steps / 学習ステップ数: 174
[2025-01-27 21:28:47] [INFO] steps: 0%| | 0/174 [00:00<?, ?it/s]
[2025-01-27 21:28:47] [INFO] epoch 1/6
[2025-01-27 21:56:53] [INFO] steps: 1%| | 1/174 [00:55<2:40:05, 55.52s/it]
steps: 1%| | 1/174 [00:55<2:40:05, 55.52s/it, avr_loss=0.345]
steps: 1%| | 2/174 [01:51<2:39:54, 55.78s/it, avr_loss=0.345]
steps: 1%| | 2/174 [01:51<2:39:54, 55.78s/it, avr_loss=0.375]
steps: 2%|▏ | 3/174 [02:48<2:40:20, 56.26s/it, avr_loss=0.375]
steps: 2%|▏ | 3/174 [02:48<2:40:20, 56.26s/it, avr_loss=0.444]
steps: 2%|▏ | 4/174 [03:47<2:40:50, 56.77s/it, avr_loss=0.444]
steps: 2%|▏ | 4/174 [03:47<2:40:50, 56.77s/it, avr_loss=0.473]
steps: 3%|▎ | 5/174 [04:45<2:40:51, 57.11s/it, avr_loss=0.473]
steps: 3%|▎ | 5/174 [04:45<2:40:51, 57.11s/it, avr_loss=0.49]
steps: 3%|▎ | 6/174 [05:43<2:40:31, 57.33s/it, avr_loss=0.49]
steps: 3%|▎ | 6/174 [05:43<2:40:31, 57.33s/it, avr_loss=0.479]
steps: 4%|▍ | 7/174 [06:42<2:40:00, 57.49s/it, avr_loss=0.479]
steps: 4%|▍ | 7/174 [06:42<2:40:00, 57.49s/it, avr_loss=0.468]
steps: 5%|▍ | 8/174 [07:40<2:39:22, 57.60s/it, avr_loss=0.468]
steps: 5%|▍ | 8/174 [07:40<2:39:22, 57.60s/it, avr_loss=0.472]
steps: 5%|▌ | 9/174 [08:39<2:38:39, 57.69s/it, avr_loss=0.472]
steps: 5%|▌ | 9/174 [08:39<2:38:39, 57.69s/it, avr_loss=0.466]
steps: 6%|▌ | 10/174 [09:37<2:37:52, 57.76s/it, avr_loss=0.466]
steps: 6%|▌ | 10/174 [09:37<2:37:52, 57.76s/it, avr_loss=0.479]
steps: 6%|▋ | 11/174 [10:35<2:37:03, 57.81s/it, avr_loss=0.479]
steps: 6%|▋ | 11/174 [10:35<2:37:03, 57.81s/it, avr_loss=0.478]
steps: 7%|▋ | 12/174 [11:34<2:36:13, 57.86s/it, avr_loss=0.478]
steps: 7%|▋ | 12/174 [11:34<2:36:13, 57.86s/it, avr_loss=0.473]
steps: 7%|▋ | 13/174 [12:32<2:35:23, 57.91s/it, avr_loss=0.473]
steps: 7%|▋ | 13/174 [12:32<2:35:23, 57.91s/it, avr_loss=0.466]
steps: 8%|▊ | 14/174 [13:31<2:34:30, 57.94s/it, avr_loss=0.466]
steps: 8%|▊ | 14/174 [13:31<2:34:30, 57.94s/it, avr_loss=0.463]
steps: 9%|▊ | 15/174 [14:29<2:33:37, 57.97s/it, avr_loss=0.463]
steps: 9%|▊ | 15/174 [14:29<2:33:37, 57.97s/it, avr_loss=0.461]
steps: 9%|▉ | 16/174 [15:27<2:32:42, 57.99s/it, avr_loss=0.461]
steps: 9%|▉ | 16/174 [15:27<2:32:42, 57.99s/it, avr_loss=0.46]
steps: 10%|▉ | 17/174 [16:26<2:31:47, 58.01s/it, avr_loss=0.46]
steps: 10%|▉ | 17/174 [16:26<2:31:47, 58.01s/it, avr_loss=0.454]
steps: 10%|█ | 18/174 [17:24<2:30:52, 58.03s/it, avr_loss=0.454]
steps: 10%|█ | 18/174 [17:24<2:30:52, 58.03s/it, avr_loss=0.452]
steps: 11%|█ | 19/174 [18:22<2:29:56, 58.04s/it, avr_loss=0.452]
steps: 11%|█ | 19/174 [18:22<2:29:56, 58.04s/it, avr_loss=0.452]
steps: 11%|█▏ | 20/174 [19:21<2:29:01, 58.06s/it, avr_loss=0.452]
steps: 11%|█▏ | 20/174 [19:21<2:29:01, 58.06s/it, avr_loss=0.451]
steps: 12%|█▏ | 21/174 [20:19<2:28:05, 58.07s/it, avr_loss=0.451]
steps: 12%|█▏ | 21/174 [20:19<2:28:05, 58.07s/it, avr_loss=0.449]
steps: 13%|█▎ | 22/174 [21:17<2:27:08, 58.08s/it, avr_loss=0.449]
steps: 13%|█▎ | 22/174 [21:17<2:27:08, 58.08s/it, avr_loss=0.446]
steps: 13%|█▎ | 23/174 [22:16<2:26:12, 58.10s/it, avr_loss=0.446]
steps: 13%|█▎ | 23/174 [22:16<2:26:12, 58.10s/it, avr_loss=0.444]
steps: 14%|█▍ | 24/174 [23:14<2:25:16, 58.11s/it, avr_loss=0.444]
steps: 14%|█▍ | 24/174 [23:14<2:25:16, 58.11s/it, avr_loss=0.443]
steps: 14%|█▍ | 25/174 [24:12<2:24:19, 58.11s/it, avr_loss=0.443]
steps: 14%|█▍ | 25/174 [24:12<2:24:19, 58.11s/it, avr_loss=0.441]
steps: 15%|█▍ | 26/174 [25:11<2:23:21, 58.12s/it, avr_loss=0.441]
steps: 15%|█▍ | 26/174 [25:11<2:23:21, 58.12s/it, avr_loss=0.437]
steps: 16%|█▌ | 27/174 [26:09<2:22:24, 58.13s/it, avr_loss=0.437]
steps: 16%|█▌ | 27/174 [26:09<2:22:24, 58.13s/it, avr_loss=0.442]
steps: 16%|█▌ | 28/174 [27:07<2:21:27, 58.13s/it, avr_loss=0.442]
steps: 16%|█▌ | 28/174 [27:07<2:21:27, 58.14s/it, avr_loss=0.439]
steps: 17%|█▋ | 29/174 [28:06<2:20:30, 58.14s/it, avr_loss=0.439]
steps: 17%|█▋ | 29/174 [28:06<2:20:30, 58.14s/it, avr_loss=0.436]
[2025-01-27 21:56:53] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux-000001.safetensors
[2025-01-27 21:56:53] [INFO] /data/work/xiehao/fluxgym/sd-scripts/networks/lora_flux.py:861: FutureWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
[2025-01-27 21:56:53] [INFO] return super().state_dict(destination, prefix, keep_vars)
[2025-01-27 21:56:53] [INFO]
[2025-01-27 21:56:53] [INFO] epoch 2/6
[2025-01-27 22:25:05] [INFO] steps: 17%|█▋ | 30/174 [29:04<2:19:34, 58.16s/it, avr_loss=0.436]
steps: 17%|█▋ | 30/174 [29:04<2:19:34, 58.16s/it, avr_loss=0.438]
steps: 18%|█▊ | 31/174 [30:03<2:18:37, 58.16s/it, avr_loss=0.438]
steps: 18%|█▊ | 31/174 [30:03<2:18:37, 58.16s/it, avr_loss=0.438]
steps: 18%|█▊ | 32/174 [31:01<2:17:40, 58.17s/it, avr_loss=0.438]
steps: 18%|█▊ | 32/174 [31:01<2:17:40, 58.17s/it, avr_loss=0.431]
steps: 19%|█▉ | 33/174 [31:59<2:16:43, 58.18s/it, avr_loss=0.431]
steps: 19%|█▉ | 33/174 [31:59<2:16:43, 58.18s/it, avr_loss=0.428]
steps: 20%|█▉ | 34/174 [32:58<2:15:46, 58.19s/it, avr_loss=0.428]
steps: 20%|█▉ | 34/174 [32:58<2:15:46, 58.19s/it, avr_loss=0.422]
steps: 20%|██ | 35/174 [33:56<2:14:48, 58.19s/it, avr_loss=0.422]
steps: 20%|██ | 35/174 [33:56<2:14:48, 58.19s/it, avr_loss=0.423]
steps: 21%|██ | 36/174 [34:55<2:13:50, 58.19s/it, avr_loss=0.423]
steps: 21%|██ | 36/174 [34:55<2:13:50, 58.19s/it, avr_loss=0.423]
steps: 21%|██▏ | 37/174 [35:53<2:12:52, 58.20s/it, avr_loss=0.423]
steps: 21%|██▏ | 37/174 [35:53<2:12:52, 58.20s/it, avr_loss=0.423]
steps: 22%|██▏ | 38/174 [36:51<2:11:54, 58.20s/it, avr_loss=0.423]
steps: 22%|██▏ | 38/174 [36:51<2:11:54, 58.20s/it, avr_loss=0.421]
steps: 22%|██▏ | 39/174 [37:49<2:10:56, 58.20s/it, avr_loss=0.421]
steps: 22%|██▏ | 39/174 [37:49<2:10:56, 58.20s/it, avr_loss=0.415]
steps: 23%|██▎ | 40/174 [38:47<2:09:58, 58.20s/it, avr_loss=0.415]
steps: 23%|██▎ | 40/174 [38:47<2:09:58, 58.20s/it, avr_loss=0.412]
steps: 24%|██▎ | 41/174 [39:46<2:09:00, 58.20s/it, avr_loss=0.412]
steps: 24%|██▎ | 41/174 [39:46<2:09:00, 58.20s/it, avr_loss=0.413]
steps: 24%|██▍ | 42/174 [40:44<2:08:02, 58.20s/it, avr_loss=0.413]
steps: 24%|██▍ | 42/174 [40:44<2:08:02, 58.20s/it, avr_loss=0.418]
steps: 25%|██▍ | 43/174 [41:42<2:07:04, 58.20s/it, avr_loss=0.418]
steps: 25%|██▍ | 43/174 [41:42<2:07:04, 58.20s/it, avr_loss=0.422]
steps: 25%|██▌ | 44/174 [42:41<2:06:06, 58.21s/it, avr_loss=0.422]
steps: 25%|██▌ | 44/174 [42:41<2:06:06, 58.21s/it, avr_loss=0.419]
steps: 26%|██▌ | 45/174 [43:39<2:05:08, 58.21s/it, avr_loss=0.419]
steps: 26%|██▌ | 45/174 [43:39<2:05:08, 58.21s/it, avr_loss=0.42]
steps: 26%|██▋ | 46/174 [44:37<2:04:10, 58.21s/it, avr_loss=0.42]
steps: 26%|██▋ | 46/174 [44:37<2:04:10, 58.21s/it, avr_loss=0.421]
steps: 27%|██▋ | 47/174 [45:35<2:03:12, 58.21s/it, avr_loss=0.421]
steps: 27%|██▋ | 47/174 [45:35<2:03:12, 58.21s/it, avr_loss=0.425]
steps: 28%|██▊ | 48/174 [46:34<2:02:14, 58.21s/it, avr_loss=0.425]
steps: 28%|██▊ | 48/174 [46:34<2:02:14, 58.21s/it, avr_loss=0.423]
steps: 28%|██▊ | 49/174 [47:32<2:01:16, 58.21s/it, avr_loss=0.423]
steps: 28%|██▊ | 49/174 [47:32<2:01:16, 58.21s/it, avr_loss=0.427]
steps: 29%|██▊ | 50/174 [48:30<2:00:18, 58.22s/it, avr_loss=0.427]
steps: 29%|██▊ | 50/174 [48:30<2:00:18, 58.22s/it, avr_loss=0.428]
steps: 29%|██▉ | 51/174 [49:29<1:59:20, 58.22s/it, avr_loss=0.428]
steps: 29%|██▉ | 51/174 [49:29<1:59:20, 58.22s/it, avr_loss=0.431]
steps: 30%|██▉ | 52/174 [50:27<1:58:23, 58.22s/it, avr_loss=0.431]
steps: 30%|██▉ | 52/174 [50:27<1:58:23, 58.22s/it, avr_loss=0.429]
steps: 30%|███ | 53/174 [51:26<1:57:25, 58.23s/it, avr_loss=0.429]
steps: 30%|███ | 53/174 [51:26<1:57:25, 58.23s/it, avr_loss=0.427]
steps: 31%|███ | 54/174 [52:24<1:56:27, 58.23s/it, avr_loss=0.427]
steps: 31%|███ | 54/174 [52:24<1:56:27, 58.23s/it, avr_loss=0.427]
steps: 32%|███▏ | 55/174 [53:22<1:55:30, 58.24s/it, avr_loss=0.427]
steps: 32%|███▏ | 55/174 [53:23<1:55:30, 58.24s/it, avr_loss=0.434]
steps: 32%|███▏ | 56/174 [54:21<1:54:32, 58.24s/it, avr_loss=0.434]
steps: 32%|███▏ | 56/174 [54:21<1:54:32, 58.24s/it, avr_loss=0.426]
steps: 33%|███▎ | 57/174 [55:19<1:53:34, 58.25s/it, avr_loss=0.426]
steps: 33%|███▎ | 57/174 [55:19<1:53:34, 58.25s/it, avr_loss=0.428]
steps: 33%|███▎ | 58/174 [56:18<1:52:36, 58.25s/it, avr_loss=0.428]
steps: 33%|███▎ | 58/174 [56:18<1:52:36, 58.25s/it, avr_loss=0.428]
[2025-01-27 22:25:05] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux-000002.safetensors
[2025-01-27 22:25:06] [INFO]
[2025-01-27 22:25:06] [INFO] epoch 3/6
[2025-01-27 22:53:19] [INFO] steps: 34%|███▍ | 59/174 [57:17<1:51:39, 58.26s/it, avr_loss=0.428]
steps: 34%|███▍ | 59/174 [57:17<1:51:39, 58.26s/it, avr_loss=0.428]
steps: 34%|███▍ | 60/174 [58:15<1:50:41, 58.26s/it, avr_loss=0.428]
steps: 34%|███▍ | 60/174 [58:15<1:50:41, 58.26s/it, avr_loss=0.427]
steps: 35%|███▌ | 61/174 [59:14<1:49:43, 58.26s/it, avr_loss=0.427]
steps: 35%|███▌ | 61/174 [59:14<1:49:43, 58.26s/it, avr_loss=0.426]
steps: 36%|███▌ | 62/174 [1:00:12<1:48:45, 58.26s/it, avr_loss=0.426]
steps: 36%|███▌ | 62/174 [1:00:12<1:48:45, 58.26s/it, avr_loss=0.424]
steps: 36%|███▌ | 63/174 [1:01:10<1:47:47, 58.26s/it, avr_loss=0.424]
steps: 36%|███▌ | 63/174 [1:01:10<1:47:47, 58.26s/it, avr_loss=0.424]
steps: 37%|███▋ | 64/174 [1:02:08<1:46:49, 58.26s/it, avr_loss=0.424]
steps: 37%|███▋ | 64/174 [1:02:08<1:46:49, 58.26s/it, avr_loss=0.422]
steps: 37%|███▋ | 65/174 [1:03:07<1:45:50, 58.26s/it, avr_loss=0.422]
steps: 37%|███▋ | 65/174 [1:03:07<1:45:50, 58.26s/it, avr_loss=0.424]
steps: 38%|███▊ | 66/174 [1:04:05<1:44:52, 58.26s/it, avr_loss=0.424]
steps: 38%|███▊ | 66/174 [1:04:05<1:44:52, 58.26s/it, avr_loss=0.423]
steps: 39%|███▊ | 67/174 [1:05:03<1:43:54, 58.26s/it, avr_loss=0.423]
steps: 39%|███▊ | 67/174 [1:05:03<1:43:54, 58.26s/it, avr_loss=0.425]
steps: 39%|███▉ | 68/174 [1:06:01<1:42:55, 58.26s/it, avr_loss=0.425]
steps: 39%|███▉ | 68/174 [1:06:01<1:42:55, 58.26s/it, avr_loss=0.426]
steps: 40%|███▉ | 69/174 [1:07:00<1:41:57, 58.27s/it, avr_loss=0.426]
steps: 40%|███▉ | 69/174 [1:07:00<1:41:57, 58.27s/it, avr_loss=0.43]
steps: 40%|████ | 70/174 [1:07:58<1:40:59, 58.27s/it, avr_loss=0.43]
steps: 40%|████ | 70/174 [1:07:58<1:40:59, 58.27s/it, avr_loss=0.431]
steps: 41%|████ | 71/174 [1:08:57<1:40:01, 58.27s/it, avr_loss=0.431]
steps: 41%|████ | 71/174 [1:08:57<1:40:01, 58.27s/it, avr_loss=0.428]
steps: 41%|████▏ | 72/174 [1:09:55<1:39:03, 58.27s/it, avr_loss=0.428]
steps: 41%|████▏ | 72/174 [1:09:55<1:39:03, 58.27s/it, avr_loss=0.422]
steps: 42%|████▏ | 73/174 [1:10:53<1:38:05, 58.27s/it, avr_loss=0.422]
steps: 42%|████▏ | 73/174 [1:10:53<1:38:05, 58.27s/it, avr_loss=0.424]
steps: 43%|████▎ | 74/174 [1:11:52<1:37:07, 58.27s/it, avr_loss=0.424]
steps: 43%|████▎ | 74/174 [1:11:52<1:37:07, 58.27s/it, avr_loss=0.422]
steps: 43%|████▎ | 75/174 [1:12:50<1:36:08, 58.27s/it, avr_loss=0.422]
steps: 43%|████▎ | 75/174 [1:12:50<1:36:08, 58.27s/it, avr_loss=0.421]
steps: 44%|████▎ | 76/174 [1:13:48<1:35:10, 58.27s/it, avr_loss=0.421]
steps: 44%|████▎ | 76/174 [1:13:48<1:35:10, 58.27s/it, avr_loss=0.417]
steps: 44%|████▍ | 77/174 [1:14:47<1:34:12, 58.27s/it, avr_loss=0.417]
steps: 44%|████▍ | 77/174 [1:14:47<1:34:12, 58.27s/it, avr_loss=0.416]
steps: 45%|████▍ | 78/174 [1:15:45<1:33:14, 58.28s/it, avr_loss=0.416]
steps: 45%|████▍ | 78/174 [1:15:45<1:33:14, 58.28s/it, avr_loss=0.413]
steps: 45%|████▌ | 79/174 [1:16:43<1:32:16, 58.28s/it, avr_loss=0.413]
steps: 45%|████▌ | 79/174 [1:16:43<1:32:16, 58.28s/it, avr_loss=0.411]
steps: 46%|████▌ | 80/174 [1:17:42<1:31:18, 58.28s/it, avr_loss=0.411]
steps: 46%|████▌ | 80/174 [1:17:42<1:31:18, 58.28s/it, avr_loss=0.408]
steps: 47%|████▋ | 81/174 [1:18:40<1:30:20, 58.28s/it, avr_loss=0.408]
steps: 47%|████▋ | 81/174 [1:18:40<1:30:20, 58.28s/it, avr_loss=0.41]
steps: 47%|████▋ | 82/174 [1:19:39<1:29:22, 58.29s/it, avr_loss=0.41]
steps: 47%|████▋ | 82/174 [1:19:39<1:29:22, 58.29s/it, avr_loss=0.412]
steps: 48%|████▊ | 83/174 [1:20:37<1:28:24, 58.29s/it, avr_loss=0.412]
steps: 48%|████▊ | 83/174 [1:20:37<1:28:24, 58.29s/it, avr_loss=0.412]
steps: 48%|████▊ | 84/174 [1:21:36<1:27:26, 58.29s/it, avr_loss=0.412]
steps: 48%|████▊ | 84/174 [1:21:36<1:27:26, 58.29s/it, avr_loss=0.401]
steps: 49%|████▉ | 85/174 [1:22:34<1:26:28, 58.29s/it, avr_loss=0.401]
steps: 49%|████▉ | 85/174 [1:22:34<1:26:28, 58.29s/it, avr_loss=0.4]
steps: 49%|████▉ | 86/174 [1:23:33<1:25:29, 58.29s/it, avr_loss=0.4]
steps: 49%|████▉ | 86/174 [1:23:33<1:25:29, 58.29s/it, avr_loss=0.401]
steps: 50%|█████ | 87/174 [1:24:31<1:24:31, 58.29s/it, avr_loss=0.401]
steps: 50%|█████ | 87/174 [1:24:31<1:24:31, 58.29s/it, avr_loss=0.409]
[2025-01-27 22:53:19] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux-000003.safetensors
[2025-01-27 22:53:19] [INFO]
[2025-01-27 22:53:19] [INFO] epoch 4/6
[2025-01-27 23:21:31] [INFO] steps: 51%|█████ | 88/174 [1:25:30<1:23:33, 58.30s/it, avr_loss=0.409]
steps: 51%|█████ | 88/174 [1:25:30<1:23:33, 58.30s/it, avr_loss=0.409]
steps: 51%|█████ | 89/174 [1:26:28<1:22:35, 58.30s/it, avr_loss=0.409]
steps: 51%|█████ | 89/174 [1:26:28<1:22:35, 58.30s/it, avr_loss=0.412]
steps: 52%|█████▏ | 90/174 [1:27:26<1:21:36, 58.30s/it, avr_loss=0.412]
steps: 52%|█████▏ | 90/174 [1:27:26<1:21:36, 58.30s/it, avr_loss=0.42]
steps: 52%|█████▏ | 91/174 [1:28:24<1:20:38, 58.30s/it, avr_loss=0.42]
steps: 52%|█████▏ | 91/174 [1:28:24<1:20:38, 58.30s/it, avr_loss=0.418]
steps: 53%|█████▎ | 92/174 [1:29:23<1:19:40, 58.30s/it, avr_loss=0.418]
steps: 53%|█████▎ | 92/174 [1:29:23<1:19:40, 58.30s/it, avr_loss=0.417]
steps: 53%|█████▎ | 93/174 [1:30:21<1:18:41, 58.30s/it, avr_loss=0.417]
steps: 53%|█████▎ | 93/174 [1:30:21<1:18:41, 58.30s/it, avr_loss=0.417]
steps: 54%|█████▍ | 94/174 [1:31:19<1:17:43, 58.30s/it, avr_loss=0.417]
steps: 54%|█████▍ | 94/174 [1:31:19<1:17:43, 58.30s/it, avr_loss=0.413]
steps: 55%|█████▍ | 95/174 [1:32:18<1:16:45, 58.30s/it, avr_loss=0.413]
steps: 55%|█████▍ | 95/174 [1:32:18<1:16:45, 58.30s/it, avr_loss=0.413]
steps: 55%|█████▌ | 96/174 [1:33:16<1:15:47, 58.30s/it, avr_loss=0.413]
steps: 55%|█████▌ | 96/174 [1:33:16<1:15:47, 58.30s/it, avr_loss=0.412]
steps: 56%|█████▌ | 97/174 [1:34:14<1:14:48, 58.29s/it, avr_loss=0.412]
steps: 56%|█████▌ | 97/174 [1:34:14<1:14:48, 58.29s/it, avr_loss=0.409]
steps: 56%|█████▋ | 98/174 [1:35:12<1:13:50, 58.30s/it, avr_loss=0.409]
steps: 56%|█████▋ | 98/174 [1:35:12<1:13:50, 58.30s/it, avr_loss=0.407]
steps: 57%|█████▋ | 99/174 [1:36:11<1:12:52, 58.30s/it, avr_loss=0.407]
steps: 57%|█████▋ | 99/174 [1:36:11<1:12:52, 58.30s/it, avr_loss=0.407]
steps: 57%|█████▋ | 100/174 [1:37:09<1:11:54, 58.30s/it, avr_loss=0.407]
steps: 57%|█████▋ | 100/174 [1:37:09<1:11:54, 58.30s/it, avr_loss=0.404]
steps: 58%|█████▊ | 101/174 [1:38:08<1:10:55, 58.30s/it, avr_loss=0.404]
steps: 58%|█████▊ | 101/174 [1:38:08<1:10:55, 58.30s/it, avr_loss=0.405]
steps: 59%|█████▊ | 102/174 [1:39:06<1:09:57, 58.30s/it, avr_loss=0.405]
steps: 59%|█████▊ | 102/174 [1:39:06<1:09:57, 58.30s/it, avr_loss=0.403]
steps: 59%|█████▉ | 103/174 [1:40:05<1:08:59, 58.31s/it, avr_loss=0.403]
steps: 59%|█████▉ | 103/174 [1:40:05<1:08:59, 58.31s/it, avr_loss=0.403]
steps: 60%|█████▉ | 104/174 [1:41:03<1:08:01, 58.31s/it, avr_loss=0.403]
steps: 60%|█████▉ | 104/174 [1:41:03<1:08:01, 58.31s/it, avr_loss=0.406]
steps: 60%|██████ | 105/174 [1:42:02<1:07:03, 58.31s/it, avr_loss=0.406]
steps: 60%|██████ | 105/174 [1:42:02<1:07:03, 58.31s/it, avr_loss=0.411]
steps: 61%|██████ | 106/174 [1:43:00<1:06:04, 58.30s/it, avr_loss=0.411]
steps: 61%|██████ | 106/174 [1:43:00<1:06:04, 58.30s/it, avr_loss=0.414]
steps: 61%|██████▏ | 107/174 [1:43:58<1:05:06, 58.30s/it, avr_loss=0.414]
steps: 61%|██████▏ | 107/174 [1:43:58<1:05:06, 58.30s/it, avr_loss=0.415]
steps: 62%|██████▏ | 108/174 [1:44:56<1:04:08, 58.30s/it, avr_loss=0.415]
steps: 62%|██████▏ | 108/174 [1:44:56<1:04:08, 58.30s/it, avr_loss=0.42]
steps: 63%|██████▎ | 109/174 [1:45:55<1:03:09, 58.30s/it, avr_loss=0.42]
steps: 63%|██████▎ | 109/174 [1:45:55<1:03:09, 58.30s/it, avr_loss=0.419]
steps: 63%|██████▎ | 110/174 [1:46:53<1:02:11, 58.30s/it, avr_loss=0.419]
steps: 63%|██████▎ | 110/174 [1:46:53<1:02:11, 58.30s/it, avr_loss=0.42]
steps: 64%|██████▍ | 111/174 [1:47:51<1:01:12, 58.30s/it, avr_loss=0.42]
steps: 64%|██████▍ | 111/174 [1:47:51<1:01:12, 58.30s/it, avr_loss=0.42]
steps: 64%|██████▍ | 112/174 [1:48:49<1:00:14, 58.30s/it, avr_loss=0.42]
steps: 64%|██████▍ | 112/174 [1:48:49<1:00:14, 58.30s/it, avr_loss=0.425]
steps: 65%|██████▍ | 113/174 [1:49:48<59:16, 58.30s/it, avr_loss=0.425]
steps: 65%|██████▍ | 113/174 [1:49:48<59:16, 58.30s/it, avr_loss=0.433]
steps: 66%|██████▌ | 114/174 [1:50:46<58:18, 58.31s/it, avr_loss=0.433]
steps: 66%|██████▌ | 114/174 [1:50:46<58:18, 58.31s/it, avr_loss=0.433]
steps: 66%|██████▌ | 115/174 [1:51:45<57:20, 58.31s/it, avr_loss=0.433]
steps: 66%|██████▌ | 115/174 [1:51:45<57:20, 58.31s/it, avr_loss=0.432]
steps: 67%|██████▋ | 116/174 [1:52:43<56:21, 58.31s/it, avr_loss=0.432]
steps: 67%|██████▋ | 116/174 [1:52:43<56:21, 58.31s/it, avr_loss=0.429]
[2025-01-27 23:21:31] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux-000004.safetensors
[2025-01-27 23:21:31] [INFO]
[2025-01-27 23:21:31] [INFO] epoch 5/6
[2025-01-27 23:49:42] [INFO] steps: 67%|██████▋ | 117/174 [1:53:42<55:23, 58.31s/it, avr_loss=0.429]
steps: 67%|██████▋ | 117/174 [1:53:42<55:23, 58.31s/it, avr_loss=0.43]
steps: 68%|██████▊ | 118/174 [1:54:40<54:25, 58.31s/it, avr_loss=0.43]
steps: 68%|██████▊ | 118/174 [1:54:40<54:25, 58.31s/it, avr_loss=0.432]
steps: 68%|██████▊ | 119/174 [1:55:38<53:26, 58.31s/it, avr_loss=0.432]
steps: 68%|██████▊ | 119/174 [1:55:38<53:26, 58.31s/it, avr_loss=0.425]
steps: 69%|██████▉ | 120/174 [1:56:36<52:28, 58.31s/it, avr_loss=0.425]
steps: 69%|██████▉ | 120/174 [1:56:36<52:28, 58.31s/it, avr_loss=0.424]
steps: 70%|██████▉ | 121/174 [1:57:35<51:30, 58.31s/it, avr_loss=0.424]
steps: 70%|██████▉ | 121/174 [1:57:35<51:30, 58.31s/it, avr_loss=0.431]
steps: 70%|███████ | 122/174 [1:58:33<50:31, 58.31s/it, avr_loss=0.431]
steps: 70%|███████ | 122/174 [1:58:33<50:31, 58.31s/it, avr_loss=0.433]
steps: 71%|███████ | 123/174 [1:59:31<49:33, 58.30s/it, avr_loss=0.433]
steps: 71%|███████ | 123/174 [1:59:31<49:33, 58.30s/it, avr_loss=0.435]
steps: 71%|███████▏ | 124/174 [2:00:29<48:35, 58.30s/it, avr_loss=0.435]
steps: 71%|███████▏ | 124/174 [2:00:29<48:35, 58.30s/it, avr_loss=0.433]
steps: 72%|███████▏ | 125/174 [2:01:27<47:36, 58.30s/it, avr_loss=0.433]
steps: 72%|███████▏ | 125/174 [2:01:27<47:36, 58.30s/it, avr_loss=0.436]
steps: 72%|███████▏ | 126/174 [2:02:26<46:38, 58.30s/it, avr_loss=0.436]
steps: 72%|███████▏ | 126/174 [2:02:26<46:38, 58.30s/it, avr_loss=0.435]
steps: 73%|███████▎ | 127/174 [2:03:24<45:40, 58.30s/it, avr_loss=0.435]
steps: 73%|███████▎ | 127/174 [2:03:24<45:40, 58.30s/it, avr_loss=0.439]
steps: 74%|███████▎ | 128/174 [2:04:22<44:41, 58.30s/it, avr_loss=0.439]
steps: 74%|███████▎ | 128/174 [2:04:22<44:41, 58.30s/it, avr_loss=0.434]
steps: 74%|███████▍ | 129/174 [2:05:20<43:43, 58.30s/it, avr_loss=0.434]
steps: 74%|███████▍ | 129/174 [2:05:20<43:43, 58.30s/it, avr_loss=0.434]
steps: 75%|███████▍ | 130/174 [2:06:19<42:45, 58.30s/it, avr_loss=0.434]
steps: 75%|███████▍ | 130/174 [2:06:19<42:45, 58.30s/it, avr_loss=0.435]
steps: 75%|███████▌ | 131/174 [2:07:17<41:47, 58.30s/it, avr_loss=0.435]
steps: 75%|███████▌ | 131/174 [2:07:17<41:47, 58.30s/it, avr_loss=0.435]
steps: 76%|███████▌ | 132/174 [2:08:16<40:48, 58.31s/it, avr_loss=0.435]
steps: 76%|███████▌ | 132/174 [2:08:16<40:48, 58.31s/it, avr_loss=0.438]
steps: 76%|███████▋ | 133/174 [2:09:14<39:50, 58.31s/it, avr_loss=0.438]
steps: 76%|███████▋ | 133/174 [2:09:14<39:50, 58.31s/it, avr_loss=0.438]
steps: 77%|███████▋ | 134/174 [2:10:13<38:52, 58.31s/it, avr_loss=0.438]
steps: 77%|███████▋ | 134/174 [2:10:13<38:52, 58.31s/it, avr_loss=0.433]
steps: 78%|███████▊ | 135/174 [2:11:11<37:54, 58.31s/it, avr_loss=0.433]
steps: 78%|███████▊ | 135/174 [2:11:11<37:54, 58.31s/it, avr_loss=0.432]
steps: 78%|███████▊ | 136/174 [2:12:09<36:55, 58.31s/it, avr_loss=0.432]
steps: 78%|███████▊ | 136/174 [2:12:09<36:55, 58.31s/it, avr_loss=0.43]
steps: 79%|███████▊ | 137/174 [2:13:08<35:57, 58.31s/it, avr_loss=0.43]
steps: 79%|███████▊ | 137/174 [2:13:08<35:57, 58.31s/it, avr_loss=0.426]
steps: 79%|███████▉ | 138/174 [2:14:06<34:59, 58.31s/it, avr_loss=0.426]
steps: 79%|███████▉ | 138/174 [2:14:06<34:59, 58.31s/it, avr_loss=0.427]
steps: 80%|███████▉ | 139/174 [2:15:04<34:00, 58.31s/it, avr_loss=0.427]
steps: 80%|███████▉ | 139/174 [2:15:04<34:00, 58.31s/it, avr_loss=0.426]
steps: 80%|████████ | 140/174 [2:16:03<33:02, 58.31s/it, avr_loss=0.426]
steps: 80%|████████ | 140/174 [2:16:03<33:02, 58.31s/it, avr_loss=0.424]
steps: 81%|████████ | 141/174 [2:17:01<32:04, 58.31s/it, avr_loss=0.424]
steps: 81%|████████ | 141/174 [2:17:01<32:04, 58.31s/it, avr_loss=0.42]
steps: 82%|████████▏ | 142/174 [2:17:59<31:05, 58.31s/it, avr_loss=0.42]
steps: 82%|████████▏ | 142/174 [2:17:59<31:05, 58.31s/it, avr_loss=0.419]
steps: 82%|████████▏ | 143/174 [2:18:58<30:07, 58.31s/it, avr_loss=0.419]
steps: 82%|████████▏ | 143/174 [2:18:58<30:07, 58.31s/it, avr_loss=0.418]
steps: 83%|████████▎ | 144/174 [2:19:56<29:09, 58.31s/it, avr_loss=0.418]
steps: 83%|████████▎ | 144/174 [2:19:56<29:09, 58.31s/it, avr_loss=0.42]
steps: 83%|████████▎ | 145/174 [2:20:55<28:11, 58.31s/it, avr_loss=0.42]
steps: 83%|████████▎ | 145/174 [2:20:55<28:11, 58.31s/it, avr_loss=0.417]
[2025-01-27 23:49:42] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux-000005.safetensors
[2025-01-27 23:49:42] [INFO]
[2025-01-27 23:49:42] [INFO] epoch 6/6
[2025-01-28 00:17:58] [INFO] steps: 84%|████████▍ | 146/174 [2:21:53<27:12, 58.31s/it, avr_loss=0.417]
steps: 84%|████████▍ | 146/174 [2:21:53<27:12, 58.31s/it, avr_loss=0.425]
steps: 84%|████████▍ | 147/174 [2:22:52<26:14, 58.32s/it, avr_loss=0.425]
steps: 84%|████████▍ | 147/174 [2:22:52<26:14, 58.32s/it, avr_loss=0.423]
steps: 85%|████████▌ | 148/174 [2:23:50<25:16, 58.32s/it, avr_loss=0.423]
steps: 85%|████████▌ | 148/174 [2:23:50<25:16, 58.32s/it, avr_loss=0.425]
steps: 86%|████████▌ | 149/174 [2:24:49<24:17, 58.32s/it, avr_loss=0.425]
steps: 86%|████████▌ | 149/174 [2:24:49<24:17, 58.32s/it, avr_loss=0.425]
steps: 86%|████████▌ | 150/174 [2:25:47<23:19, 58.32s/it, avr_loss=0.425]
steps: 86%|████████▌ | 150/174 [2:25:47<23:19, 58.32s/it, avr_loss=0.422]
steps: 87%|████████▋ | 151/174 [2:26:46<22:21, 58.32s/it, avr_loss=0.422]
steps: 87%|████████▋ | 151/174 [2:26:46<22:21, 58.32s/it, avr_loss=0.419]
steps: 87%|████████▋ | 152/174 [2:27:44<21:23, 58.32s/it, avr_loss=0.419]
steps: 87%|████████▋ | 152/174 [2:27:44<21:23, 58.32s/it, avr_loss=0.419]
steps: 88%|████████▊ | 153/174 [2:28:43<20:24, 58.32s/it, avr_loss=0.419]
steps: 88%|████████▊ | 153/174 [2:28:43<20:24, 58.32s/it, avr_loss=0.423]
steps: 89%|████████▊ | 154/174 [2:29:41<19:26, 58.32s/it, avr_loss=0.423]
steps: 89%|████████▊ | 154/174 [2:29:41<19:26, 58.32s/it, avr_loss=0.417]
steps: 89%|████████▉ | 155/174 [2:30:39<18:28, 58.32s/it, avr_loss=0.417]
steps: 89%|████████▉ | 155/174 [2:30:39<18:28, 58.32s/it, avr_loss=0.423]
steps: 90%|████████▉ | 156/174 [2:31:38<17:29, 58.32s/it, avr_loss=0.423]
steps: 90%|████████▉ | 156/174 [2:31:38<17:29, 58.32s/it, avr_loss=0.419]
steps: 90%|█████████ | 157/174 [2:32:36<16:31, 58.32s/it, avr_loss=0.419]
steps: 90%|█████████ | 157/174 [2:32:36<16:31, 58.32s/it, avr_loss=0.421]
steps: 91%|█████████ | 158/174 [2:33:35<15:33, 58.32s/it, avr_loss=0.421]
steps: 91%|█████████ | 158/174 [2:33:35<15:33, 58.32s/it, avr_loss=0.424]
steps: 91%|█████████▏| 159/174 [2:34:33<14:34, 58.32s/it, avr_loss=0.424]
steps: 91%|█████████▏| 159/174 [2:34:33<14:34, 58.32s/it, avr_loss=0.423]
steps: 92%|█████████▏| 160/174 [2:35:31<13:36, 58.32s/it, avr_loss=0.423]
steps: 92%|█████████▏| 160/174 [2:35:31<13:36, 58.32s/it, avr_loss=0.424]
steps: 93%|█████████▎| 161/174 [2:36:30<12:38, 58.32s/it, avr_loss=0.424]
steps: 93%|█████████▎| 161/174 [2:36:30<12:38, 58.32s/it, avr_loss=0.42]
steps: 93%|█████████▎| 162/174 [2:37:28<11:39, 58.33s/it, avr_loss=0.42]
steps: 93%|█████████▎| 162/174 [2:37:28<11:39, 58.33s/it, avr_loss=0.429]
steps: 94%|█████████▎| 163/174 [2:38:27<10:41, 58.33s/it, avr_loss=0.429]
steps: 94%|█████████▎| 163/174 [2:38:27<10:41, 58.33s/it, avr_loss=0.426]
steps: 94%|█████████▍| 164/174 [2:39:25<09:43, 58.33s/it, avr_loss=0.426]
steps: 94%|█████████▍| 164/174 [2:39:25<09:43, 58.33s/it, avr_loss=0.426]
steps: 95%|█████████▍| 165/174 [2:40:24<08:44, 58.33s/it, avr_loss=0.426]
steps: 95%|█████████▍| 165/174 [2:40:24<08:44, 58.33s/it, avr_loss=0.427]
steps: 95%|█████████▌| 166/174 [2:41:22<07:46, 58.33s/it, avr_loss=0.427]
steps: 95%|█████████▌| 166/174 [2:41:22<07:46, 58.33s/it, avr_loss=0.425]
steps: 96%|█████████▌| 167/174 [2:42:21<06:48, 58.33s/it, avr_loss=0.425]
steps: 96%|█████████▌| 167/174 [2:42:21<06:48, 58.33s/it, avr_loss=0.425]
steps: 97%|█████████▋| 168/174 [2:43:19<05:49, 58.33s/it, avr_loss=0.425]
steps: 97%|█████████▋| 168/174 [2:43:19<05:49, 58.33s/it, avr_loss=0.425]
steps: 97%|█████████▋| 169/174 [2:44:18<04:51, 58.33s/it, avr_loss=0.425]
steps: 97%|█████████▋| 169/174 [2:44:18<04:51, 58.33s/it, avr_loss=0.43]
steps: 98%|█████████▊| 170/174 [2:45:16<03:53, 58.33s/it, avr_loss=0.43]
steps: 98%|█████████▊| 170/174 [2:45:16<03:53, 58.33s/it, avr_loss=0.431]
steps: 98%|█████████▊| 171/174 [2:46:15<02:55, 58.33s/it, avr_loss=0.431]
steps: 98%|█████████▊| 171/174 [2:46:15<02:55, 58.33s/it, avr_loss=0.431]
steps: 99%|█████████▉| 172/174 [2:47:13<01:56, 58.34s/it, avr_loss=0.431]
steps: 99%|█████████▉| 172/174 [2:47:13<01:56, 58.34s/it, avr_loss=0.434]
steps: 99%|█████████▉| 173/174 [2:48:12<00:58, 58.34s/it, avr_loss=0.434]
steps: 99%|█████████▉| 173/174 [2:48:12<00:58, 58.34s/it, avr_loss=0.433]
steps: 100%|██████████| 174/174 [2:49:10<00:00, 58.34s/it, avr_loss=0.433]
steps: 100%|██████████| 174/174 [2:49:10<00:00, 58.34s/it, avr_loss=0.434]
[2025-01-28 00:17:58] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux.safetensors
[2025-01-28 00:17:58] [INFO] steps: 100%|██████████| 174/174 [2:49:10<00:00, 58.34s/it, avr_loss=0.434]
[2025-01-28 00:18:02] [INFO] Command exited successfully
[2025-01-28 00:18:02] [INFO] Runner: <LogsViewRunner nb_logs=54 exit_code=0>
训练中,会在 /data/work/xiehao/fluxgym/outputs/tmallyc-flux 生成对应的lora模型。
本文参考: