ComfyUI中基于Fluxgym训练Flux的Lora模型

1、介绍

Fluxgym训练非常方便,只需要更改一个配置文件内容即可。训练时也不需要提前进行图片裁剪、打标等前置工作。

本文章是介绍在16G以下显存下训练Flux模型的方法。

2、部署项目

(1)下载Fluxgym 和 kohya-ss/sd-scripts

bash 复制代码
git clone https://github.com/cocktailpeanut/fluxgym
cd fluxgym
git clone -b sd3 https://github.com/kohya-ss/sd-scripts

完成之后的文件夹结构应该如下所示:

bash 复制代码
/fluxgym
  app.py
  requirements.txt
  sd-scripts/

(2)创建虚拟环境fluxgym

使用conda创建,

bash 复制代码
conda create -n fluxgym python=3.10
conda activate fluxgym

(3)安装python依赖项

进入sd-scripts文件夹,安装依赖项

bash 复制代码
cd sd-scripts
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

完成之后返回根文件夹(fluxgym),修改requirements.txt文件,将huggingface.co改为hf-mirror.com

然后安装依赖项:

bash 复制代码
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

(4)安装pytorch Nightly

bash 复制代码
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121

3、启动项目

指定server_name 和 server_port,启动服务。

cs 复制代码
cd fluxgym
export GRADIO_SERVER_NAME=0.0.0.0
export GRADIO_SERVER_PORT=16080
python app.py

启动成功的日志如下:

打开页面后显示如下:

4、训练模型

(1)模型选择

fluxgym默认支持flux-dev / flux-schnell / bdsqlsz/flux1-dev2pro-single 三种flux模型。

该信息在models.yaml文件里。

不过文件中指定的model全都是大于20G的,在16G显存中无法训练。

我们可以使用flux1-dev-fp8.safetensors模型,链接如下:

F.1-dev/fp8/NF4/GGUF-所需模型文件包-Other-墨幽-LiblibAI

(2)下载模型

该文件比较大,假如公司网络限速的话,可以直接获取下载地址,在linux服务器上下载。

Chrome浏览器上获取下载源地址的方法:

首先点击那14G文件进行下载

然后在浏览器上输入chrome://net-export/,单击开始记录日志,隔个5秒钟左右关闭记录,查看日志,找到liblibai-online.liblib.cloud的链接地址。

最后在linux服务器上直接通过wget命令进行下载。

注意这个是zip包,不是模型文件!!!下载之后需要通过unzip命令解压缩后才能使用。

下载中的日志:

然后在linux上通过wget命令下载该文件。

通过tail -f wget-log.4可以下载进度:

下载完毕后,通过mv命令修改为zip后缀的文件。

然后通过unzip命令解压文件。

然后把里面的文件放到fluxgym对应的目录之下:

mv flux1-dev-fp8.safetensors xx/fluxgym/models/unet

mv clip_l.safetensors xx/fluxgym/models/clip

mv t5xxl_fp8_e4m3fn.safetensors xx/fluxgym/models/clip

mv ae.sft xx/fluxgym/models/vae

修改app.py文件:

将文件中所有的t5xxl_fp16.safetensors替换为t5xxl_fp8_e4m3fn.safetensors

(3)修改models.yaml文件

在末尾添加如下内容:

flux1-dev-fp8:

repo: .

base: .

license: other

license_name: flux1-dev-fp8-license

file: flux1-dev-fp8.safetensors

然后重新启动项目。

(4)启动训练

1)基本设置

  • The name of your LoRA:设置Lora的名称
  • Trigger word/sentence:lora的触发词,结尾处需要增加一个英文的逗号
  • Base model:基模,选择较小的那个模型
  • VRAM:选择12G
  • repeat trains per image:修改为1,默认为10,但是10的效果不一定比1好

上传图片,然后再点击"Add AI captions with Florence-2",生成图片对应的提示词。首次生成时会自动下载模型,模型大概1.5G。

  • Max Train Expochs:最多的训练轮次,假如提前收敛则会提前结束。
  • Expected training steps:自动计算出来的训练步数
  • Sample Image Prompts:提示词样例,不影响训练结果
  • Sample Image Every N Steps:不要修改该值
  • Resize dataset images:训练模型结果对应的分辨率。

注意(使用阶段的剧透):即使Resize dataset images设置为512*512,但是如果空潜空间图像设置为1024*1024,那么最终生成的还是1024*1024的图像。

2)高级选项

点击Advanced options打开高级选项:

  • save_every_n_epochs:每N次保存一次模型,总轮次不多的话填1
  • console_log_file:日志文件位置,比如:"/data/work/xiehao/fluxgym/log2/2253",记得加双引号。
  • console_log_simple:打勾
  • fp8_base_unet:打勾,因为我们使用的是fp8的模型

3)训练过程

29张图片,以上参数,会占用10G的显存。

29张图片,768分辨率,会占用12G的显存。

运行中观察Volatile GPU-Util的值,需要大于0,一般是99%或100%。

如果是0,说明停止训练了。

训练完整日志如下:

[2025-01-27 21:26:51] [INFO] Running bash "/data/work/xiehao/fluxgym/outputs/girl-flux/train.sh"
[2025-01-27 21:27:00] [INFO] 2025-01-27 21:27:00 INFO     highvram is enabled / highvramが有効です                                                                                                          train_util.py:4199
[2025-01-27 21:27:00] [INFO] WARNING  cache_latents_to_disk is enabled, so cache_latents is also enabled / cache_latents_to_diskが有効なため、cache_latentsを有効にします               train_util.py:4216
[2025-01-27 21:27:00] [INFO] /data/work/anaconda3/envs/fluxgym/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
[2025-01-27 21:27:00] [INFO] warnings.warn(
[2025-01-27 21:27:01] [INFO] You are using the default legacy behaviour of the <class 'transformers.models.t5.tokenization_t5.T5Tokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
[2025-01-27 21:27:01] [INFO] 0%|          | 0/29 [00:00<?, ?it/s]
100%|██████████| 29/29 [00:00<00:00, 125655.80it/s]
[2025-01-27 21:27:01] [INFO] read caption:   0%|          | 0/29 [00:00<?, ?it/s]
read caption: 100%|██████████| 29/29 [00:00<00:00, 4335.74it/s]
[2025-01-27 21:27:01] [INFO] 0%|          | 0/29 [00:00<?, ?it/s]
100%|██████████| 29/29 [00:00<00:00, 679524.11it/s]
[2025-01-27 21:27:01] [INFO] accelerator device: cuda
[2025-01-27 21:27:01] [INFO] FLUX: Block swap enabled. Swapping 18 blocks, double blocks: 9, single blocks: 18.
[2025-01-27 21:27:33] [INFO] import network module: networks.lora_flux
[2025-01-27 21:27:33] [INFO] 0%|          | 0/29 [00:00<?, ?it/s]
100%|██████████| 29/29 [00:00<00:00, 6469.94it/s]
[2025-01-27 21:27:35] [INFO] 0%|          | 0/29 [00:00<?, ?it/s]
100%|██████████| 29/29 [00:00<00:00, 3760.78it/s]
[2025-01-27 21:27:41] [INFO] FLUX: Gradient checkpointing enabled. CPU offload: False
[2025-01-27 21:27:41] [INFO] prepare optimizer, data loader etc.
[2025-01-27 21:27:41] [INFO] override steps. steps for 6 epochs is / 指定エポックまでのステップ数: 174
[2025-01-27 21:27:41] [INFO] enable fp8 training for U-Net.
[2025-01-27 21:28:03] [INFO] running training / 学習開始
[2025-01-27 21:28:03] [INFO] num train images * repeats / 学習画像の数×繰り返し回数: 29
[2025-01-27 21:28:03] [INFO] num reg images / 正則化画像の数: 0
[2025-01-27 21:28:03] [INFO] num batches per epoch / 1epochのバッチ数: 29
[2025-01-27 21:28:03] [INFO] num epochs / epoch数: 6
[2025-01-27 21:28:03] [INFO] batch size per device / バッチサイズ: 1
[2025-01-27 21:28:03] [INFO] gradient accumulation steps / 勾配を合計するステップ数 = 1
[2025-01-27 21:28:03] [INFO] total optimization steps / 学習ステップ数: 174
[2025-01-27 21:28:47] [INFO] steps:   0%|          | 0/174 [00:00<?, ?it/s]
[2025-01-27 21:28:47] [INFO] epoch 1/6
[2025-01-27 21:56:53] [INFO] steps:   1%|          | 1/174 [00:55<2:40:05, 55.52s/it]
steps:   1%|          | 1/174 [00:55<2:40:05, 55.52s/it, avr_loss=0.345]
steps:   1%|          | 2/174 [01:51<2:39:54, 55.78s/it, avr_loss=0.345]
steps:   1%|          | 2/174 [01:51<2:39:54, 55.78s/it, avr_loss=0.375]
steps:   2%|▏         | 3/174 [02:48<2:40:20, 56.26s/it, avr_loss=0.375]
steps:   2%|▏         | 3/174 [02:48<2:40:20, 56.26s/it, avr_loss=0.444]
steps:   2%|▏         | 4/174 [03:47<2:40:50, 56.77s/it, avr_loss=0.444]
steps:   2%|▏         | 4/174 [03:47<2:40:50, 56.77s/it, avr_loss=0.473]
steps:   3%|▎         | 5/174 [04:45<2:40:51, 57.11s/it, avr_loss=0.473]
steps:   3%|▎         | 5/174 [04:45<2:40:51, 57.11s/it, avr_loss=0.49] 
steps:   3%|▎         | 6/174 [05:43<2:40:31, 57.33s/it, avr_loss=0.49]
steps:   3%|▎         | 6/174 [05:43<2:40:31, 57.33s/it, avr_loss=0.479]
steps:   4%|▍         | 7/174 [06:42<2:40:00, 57.49s/it, avr_loss=0.479]
steps:   4%|▍         | 7/174 [06:42<2:40:00, 57.49s/it, avr_loss=0.468]
steps:   5%|▍         | 8/174 [07:40<2:39:22, 57.60s/it, avr_loss=0.468]
steps:   5%|▍         | 8/174 [07:40<2:39:22, 57.60s/it, avr_loss=0.472]
steps:   5%|▌         | 9/174 [08:39<2:38:39, 57.69s/it, avr_loss=0.472]
steps:   5%|▌         | 9/174 [08:39<2:38:39, 57.69s/it, avr_loss=0.466]
steps:   6%|▌         | 10/174 [09:37<2:37:52, 57.76s/it, avr_loss=0.466]
steps:   6%|▌         | 10/174 [09:37<2:37:52, 57.76s/it, avr_loss=0.479]
steps:   6%|▋         | 11/174 [10:35<2:37:03, 57.81s/it, avr_loss=0.479]
steps:   6%|▋         | 11/174 [10:35<2:37:03, 57.81s/it, avr_loss=0.478]
steps:   7%|▋         | 12/174 [11:34<2:36:13, 57.86s/it, avr_loss=0.478]
steps:   7%|▋         | 12/174 [11:34<2:36:13, 57.86s/it, avr_loss=0.473]
steps:   7%|▋         | 13/174 [12:32<2:35:23, 57.91s/it, avr_loss=0.473]
steps:   7%|▋         | 13/174 [12:32<2:35:23, 57.91s/it, avr_loss=0.466]
steps:   8%|▊         | 14/174 [13:31<2:34:30, 57.94s/it, avr_loss=0.466]
steps:   8%|▊         | 14/174 [13:31<2:34:30, 57.94s/it, avr_loss=0.463]
steps:   9%|▊         | 15/174 [14:29<2:33:37, 57.97s/it, avr_loss=0.463]
steps:   9%|▊         | 15/174 [14:29<2:33:37, 57.97s/it, avr_loss=0.461]
steps:   9%|▉         | 16/174 [15:27<2:32:42, 57.99s/it, avr_loss=0.461]
steps:   9%|▉         | 16/174 [15:27<2:32:42, 57.99s/it, avr_loss=0.46] 
steps:  10%|▉         | 17/174 [16:26<2:31:47, 58.01s/it, avr_loss=0.46]
steps:  10%|▉         | 17/174 [16:26<2:31:47, 58.01s/it, avr_loss=0.454]
steps:  10%|█         | 18/174 [17:24<2:30:52, 58.03s/it, avr_loss=0.454]
steps:  10%|█         | 18/174 [17:24<2:30:52, 58.03s/it, avr_loss=0.452]
steps:  11%|█         | 19/174 [18:22<2:29:56, 58.04s/it, avr_loss=0.452]
steps:  11%|█         | 19/174 [18:22<2:29:56, 58.04s/it, avr_loss=0.452]
steps:  11%|█▏        | 20/174 [19:21<2:29:01, 58.06s/it, avr_loss=0.452]
steps:  11%|█▏        | 20/174 [19:21<2:29:01, 58.06s/it, avr_loss=0.451]
steps:  12%|█▏        | 21/174 [20:19<2:28:05, 58.07s/it, avr_loss=0.451]
steps:  12%|█▏        | 21/174 [20:19<2:28:05, 58.07s/it, avr_loss=0.449]
steps:  13%|█▎        | 22/174 [21:17<2:27:08, 58.08s/it, avr_loss=0.449]
steps:  13%|█▎        | 22/174 [21:17<2:27:08, 58.08s/it, avr_loss=0.446]
steps:  13%|█▎        | 23/174 [22:16<2:26:12, 58.10s/it, avr_loss=0.446]
steps:  13%|█▎        | 23/174 [22:16<2:26:12, 58.10s/it, avr_loss=0.444]
steps:  14%|█▍        | 24/174 [23:14<2:25:16, 58.11s/it, avr_loss=0.444]
steps:  14%|█▍        | 24/174 [23:14<2:25:16, 58.11s/it, avr_loss=0.443]
steps:  14%|█▍        | 25/174 [24:12<2:24:19, 58.11s/it, avr_loss=0.443]
steps:  14%|█▍        | 25/174 [24:12<2:24:19, 58.11s/it, avr_loss=0.441]
steps:  15%|█▍        | 26/174 [25:11<2:23:21, 58.12s/it, avr_loss=0.441]
steps:  15%|█▍        | 26/174 [25:11<2:23:21, 58.12s/it, avr_loss=0.437]
steps:  16%|█▌        | 27/174 [26:09<2:22:24, 58.13s/it, avr_loss=0.437]
steps:  16%|█▌        | 27/174 [26:09<2:22:24, 58.13s/it, avr_loss=0.442]
steps:  16%|█▌        | 28/174 [27:07<2:21:27, 58.13s/it, avr_loss=0.442]
steps:  16%|█▌        | 28/174 [27:07<2:21:27, 58.14s/it, avr_loss=0.439]
steps:  17%|█▋        | 29/174 [28:06<2:20:30, 58.14s/it, avr_loss=0.439]
steps:  17%|█▋        | 29/174 [28:06<2:20:30, 58.14s/it, avr_loss=0.436]
[2025-01-27 21:56:53] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux-000001.safetensors
[2025-01-27 21:56:53] [INFO] /data/work/xiehao/fluxgym/sd-scripts/networks/lora_flux.py:861: FutureWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
[2025-01-27 21:56:53] [INFO] return super().state_dict(destination, prefix, keep_vars)
[2025-01-27 21:56:53] [INFO] 
[2025-01-27 21:56:53] [INFO] epoch 2/6
[2025-01-27 22:25:05] [INFO] steps:  17%|█▋        | 30/174 [29:04<2:19:34, 58.16s/it, avr_loss=0.436]
steps:  17%|█▋        | 30/174 [29:04<2:19:34, 58.16s/it, avr_loss=0.438]
steps:  18%|█▊        | 31/174 [30:03<2:18:37, 58.16s/it, avr_loss=0.438]
steps:  18%|█▊        | 31/174 [30:03<2:18:37, 58.16s/it, avr_loss=0.438]
steps:  18%|█▊        | 32/174 [31:01<2:17:40, 58.17s/it, avr_loss=0.438]
steps:  18%|█▊        | 32/174 [31:01<2:17:40, 58.17s/it, avr_loss=0.431]
steps:  19%|█▉        | 33/174 [31:59<2:16:43, 58.18s/it, avr_loss=0.431]
steps:  19%|█▉        | 33/174 [31:59<2:16:43, 58.18s/it, avr_loss=0.428]
steps:  20%|█▉        | 34/174 [32:58<2:15:46, 58.19s/it, avr_loss=0.428]
steps:  20%|█▉        | 34/174 [32:58<2:15:46, 58.19s/it, avr_loss=0.422]
steps:  20%|██        | 35/174 [33:56<2:14:48, 58.19s/it, avr_loss=0.422]
steps:  20%|██        | 35/174 [33:56<2:14:48, 58.19s/it, avr_loss=0.423]
steps:  21%|██        | 36/174 [34:55<2:13:50, 58.19s/it, avr_loss=0.423]
steps:  21%|██        | 36/174 [34:55<2:13:50, 58.19s/it, avr_loss=0.423]
steps:  21%|██▏       | 37/174 [35:53<2:12:52, 58.20s/it, avr_loss=0.423]
steps:  21%|██▏       | 37/174 [35:53<2:12:52, 58.20s/it, avr_loss=0.423]
steps:  22%|██▏       | 38/174 [36:51<2:11:54, 58.20s/it, avr_loss=0.423]
steps:  22%|██▏       | 38/174 [36:51<2:11:54, 58.20s/it, avr_loss=0.421]
steps:  22%|██▏       | 39/174 [37:49<2:10:56, 58.20s/it, avr_loss=0.421]
steps:  22%|██▏       | 39/174 [37:49<2:10:56, 58.20s/it, avr_loss=0.415]
steps:  23%|██▎       | 40/174 [38:47<2:09:58, 58.20s/it, avr_loss=0.415]
steps:  23%|██▎       | 40/174 [38:47<2:09:58, 58.20s/it, avr_loss=0.412]
steps:  24%|██▎       | 41/174 [39:46<2:09:00, 58.20s/it, avr_loss=0.412]
steps:  24%|██▎       | 41/174 [39:46<2:09:00, 58.20s/it, avr_loss=0.413]
steps:  24%|██▍       | 42/174 [40:44<2:08:02, 58.20s/it, avr_loss=0.413]
steps:  24%|██▍       | 42/174 [40:44<2:08:02, 58.20s/it, avr_loss=0.418]
steps:  25%|██▍       | 43/174 [41:42<2:07:04, 58.20s/it, avr_loss=0.418]
steps:  25%|██▍       | 43/174 [41:42<2:07:04, 58.20s/it, avr_loss=0.422]
steps:  25%|██▌       | 44/174 [42:41<2:06:06, 58.21s/it, avr_loss=0.422]
steps:  25%|██▌       | 44/174 [42:41<2:06:06, 58.21s/it, avr_loss=0.419]
steps:  26%|██▌       | 45/174 [43:39<2:05:08, 58.21s/it, avr_loss=0.419]
steps:  26%|██▌       | 45/174 [43:39<2:05:08, 58.21s/it, avr_loss=0.42] 
steps:  26%|██▋       | 46/174 [44:37<2:04:10, 58.21s/it, avr_loss=0.42]
steps:  26%|██▋       | 46/174 [44:37<2:04:10, 58.21s/it, avr_loss=0.421]
steps:  27%|██▋       | 47/174 [45:35<2:03:12, 58.21s/it, avr_loss=0.421]
steps:  27%|██▋       | 47/174 [45:35<2:03:12, 58.21s/it, avr_loss=0.425]
steps:  28%|██▊       | 48/174 [46:34<2:02:14, 58.21s/it, avr_loss=0.425]
steps:  28%|██▊       | 48/174 [46:34<2:02:14, 58.21s/it, avr_loss=0.423]
steps:  28%|██▊       | 49/174 [47:32<2:01:16, 58.21s/it, avr_loss=0.423]
steps:  28%|██▊       | 49/174 [47:32<2:01:16, 58.21s/it, avr_loss=0.427]
steps:  29%|██▊       | 50/174 [48:30<2:00:18, 58.22s/it, avr_loss=0.427]
steps:  29%|██▊       | 50/174 [48:30<2:00:18, 58.22s/it, avr_loss=0.428]
steps:  29%|██▉       | 51/174 [49:29<1:59:20, 58.22s/it, avr_loss=0.428]
steps:  29%|██▉       | 51/174 [49:29<1:59:20, 58.22s/it, avr_loss=0.431]
steps:  30%|██▉       | 52/174 [50:27<1:58:23, 58.22s/it, avr_loss=0.431]
steps:  30%|██▉       | 52/174 [50:27<1:58:23, 58.22s/it, avr_loss=0.429]
steps:  30%|███       | 53/174 [51:26<1:57:25, 58.23s/it, avr_loss=0.429]
steps:  30%|███       | 53/174 [51:26<1:57:25, 58.23s/it, avr_loss=0.427]
steps:  31%|███       | 54/174 [52:24<1:56:27, 58.23s/it, avr_loss=0.427]
steps:  31%|███       | 54/174 [52:24<1:56:27, 58.23s/it, avr_loss=0.427]
steps:  32%|███▏      | 55/174 [53:22<1:55:30, 58.24s/it, avr_loss=0.427]
steps:  32%|███▏      | 55/174 [53:23<1:55:30, 58.24s/it, avr_loss=0.434]
steps:  32%|███▏      | 56/174 [54:21<1:54:32, 58.24s/it, avr_loss=0.434]
steps:  32%|███▏      | 56/174 [54:21<1:54:32, 58.24s/it, avr_loss=0.426]
steps:  33%|███▎      | 57/174 [55:19<1:53:34, 58.25s/it, avr_loss=0.426]
steps:  33%|███▎      | 57/174 [55:19<1:53:34, 58.25s/it, avr_loss=0.428]
steps:  33%|███▎      | 58/174 [56:18<1:52:36, 58.25s/it, avr_loss=0.428]
steps:  33%|███▎      | 58/174 [56:18<1:52:36, 58.25s/it, avr_loss=0.428]
[2025-01-27 22:25:05] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux-000002.safetensors
[2025-01-27 22:25:06] [INFO] 
[2025-01-27 22:25:06] [INFO] epoch 3/6
[2025-01-27 22:53:19] [INFO] steps:  34%|███▍      | 59/174 [57:17<1:51:39, 58.26s/it, avr_loss=0.428]
steps:  34%|███▍      | 59/174 [57:17<1:51:39, 58.26s/it, avr_loss=0.428]
steps:  34%|███▍      | 60/174 [58:15<1:50:41, 58.26s/it, avr_loss=0.428]
steps:  34%|███▍      | 60/174 [58:15<1:50:41, 58.26s/it, avr_loss=0.427]
steps:  35%|███▌      | 61/174 [59:14<1:49:43, 58.26s/it, avr_loss=0.427]
steps:  35%|███▌      | 61/174 [59:14<1:49:43, 58.26s/it, avr_loss=0.426]
steps:  36%|███▌      | 62/174 [1:00:12<1:48:45, 58.26s/it, avr_loss=0.426]
steps:  36%|███▌      | 62/174 [1:00:12<1:48:45, 58.26s/it, avr_loss=0.424]
steps:  36%|███▌      | 63/174 [1:01:10<1:47:47, 58.26s/it, avr_loss=0.424]
steps:  36%|███▌      | 63/174 [1:01:10<1:47:47, 58.26s/it, avr_loss=0.424]
steps:  37%|███▋      | 64/174 [1:02:08<1:46:49, 58.26s/it, avr_loss=0.424]
steps:  37%|███▋      | 64/174 [1:02:08<1:46:49, 58.26s/it, avr_loss=0.422]
steps:  37%|███▋      | 65/174 [1:03:07<1:45:50, 58.26s/it, avr_loss=0.422]
steps:  37%|███▋      | 65/174 [1:03:07<1:45:50, 58.26s/it, avr_loss=0.424]
steps:  38%|███▊      | 66/174 [1:04:05<1:44:52, 58.26s/it, avr_loss=0.424]
steps:  38%|███▊      | 66/174 [1:04:05<1:44:52, 58.26s/it, avr_loss=0.423]
steps:  39%|███▊      | 67/174 [1:05:03<1:43:54, 58.26s/it, avr_loss=0.423]
steps:  39%|███▊      | 67/174 [1:05:03<1:43:54, 58.26s/it, avr_loss=0.425]
steps:  39%|███▉      | 68/174 [1:06:01<1:42:55, 58.26s/it, avr_loss=0.425]
steps:  39%|███▉      | 68/174 [1:06:01<1:42:55, 58.26s/it, avr_loss=0.426]
steps:  40%|███▉      | 69/174 [1:07:00<1:41:57, 58.27s/it, avr_loss=0.426]
steps:  40%|███▉      | 69/174 [1:07:00<1:41:57, 58.27s/it, avr_loss=0.43] 
steps:  40%|████      | 70/174 [1:07:58<1:40:59, 58.27s/it, avr_loss=0.43]
steps:  40%|████      | 70/174 [1:07:58<1:40:59, 58.27s/it, avr_loss=0.431]
steps:  41%|████      | 71/174 [1:08:57<1:40:01, 58.27s/it, avr_loss=0.431]
steps:  41%|████      | 71/174 [1:08:57<1:40:01, 58.27s/it, avr_loss=0.428]
steps:  41%|████▏     | 72/174 [1:09:55<1:39:03, 58.27s/it, avr_loss=0.428]
steps:  41%|████▏     | 72/174 [1:09:55<1:39:03, 58.27s/it, avr_loss=0.422]
steps:  42%|████▏     | 73/174 [1:10:53<1:38:05, 58.27s/it, avr_loss=0.422]
steps:  42%|████▏     | 73/174 [1:10:53<1:38:05, 58.27s/it, avr_loss=0.424]
steps:  43%|████▎     | 74/174 [1:11:52<1:37:07, 58.27s/it, avr_loss=0.424]
steps:  43%|████▎     | 74/174 [1:11:52<1:37:07, 58.27s/it, avr_loss=0.422]
steps:  43%|████▎     | 75/174 [1:12:50<1:36:08, 58.27s/it, avr_loss=0.422]
steps:  43%|████▎     | 75/174 [1:12:50<1:36:08, 58.27s/it, avr_loss=0.421]
steps:  44%|████▎     | 76/174 [1:13:48<1:35:10, 58.27s/it, avr_loss=0.421]
steps:  44%|████▎     | 76/174 [1:13:48<1:35:10, 58.27s/it, avr_loss=0.417]
steps:  44%|████▍     | 77/174 [1:14:47<1:34:12, 58.27s/it, avr_loss=0.417]
steps:  44%|████▍     | 77/174 [1:14:47<1:34:12, 58.27s/it, avr_loss=0.416]
steps:  45%|████▍     | 78/174 [1:15:45<1:33:14, 58.28s/it, avr_loss=0.416]
steps:  45%|████▍     | 78/174 [1:15:45<1:33:14, 58.28s/it, avr_loss=0.413]
steps:  45%|████▌     | 79/174 [1:16:43<1:32:16, 58.28s/it, avr_loss=0.413]
steps:  45%|████▌     | 79/174 [1:16:43<1:32:16, 58.28s/it, avr_loss=0.411]
steps:  46%|████▌     | 80/174 [1:17:42<1:31:18, 58.28s/it, avr_loss=0.411]
steps:  46%|████▌     | 80/174 [1:17:42<1:31:18, 58.28s/it, avr_loss=0.408]
steps:  47%|████▋     | 81/174 [1:18:40<1:30:20, 58.28s/it, avr_loss=0.408]
steps:  47%|████▋     | 81/174 [1:18:40<1:30:20, 58.28s/it, avr_loss=0.41] 
steps:  47%|████▋     | 82/174 [1:19:39<1:29:22, 58.29s/it, avr_loss=0.41]
steps:  47%|████▋     | 82/174 [1:19:39<1:29:22, 58.29s/it, avr_loss=0.412]
steps:  48%|████▊     | 83/174 [1:20:37<1:28:24, 58.29s/it, avr_loss=0.412]
steps:  48%|████▊     | 83/174 [1:20:37<1:28:24, 58.29s/it, avr_loss=0.412]
steps:  48%|████▊     | 84/174 [1:21:36<1:27:26, 58.29s/it, avr_loss=0.412]
steps:  48%|████▊     | 84/174 [1:21:36<1:27:26, 58.29s/it, avr_loss=0.401]
steps:  49%|████▉     | 85/174 [1:22:34<1:26:28, 58.29s/it, avr_loss=0.401]
steps:  49%|████▉     | 85/174 [1:22:34<1:26:28, 58.29s/it, avr_loss=0.4]  
steps:  49%|████▉     | 86/174 [1:23:33<1:25:29, 58.29s/it, avr_loss=0.4]
steps:  49%|████▉     | 86/174 [1:23:33<1:25:29, 58.29s/it, avr_loss=0.401]
steps:  50%|█████     | 87/174 [1:24:31<1:24:31, 58.29s/it, avr_loss=0.401]
steps:  50%|█████     | 87/174 [1:24:31<1:24:31, 58.29s/it, avr_loss=0.409]
[2025-01-27 22:53:19] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux-000003.safetensors
[2025-01-27 22:53:19] [INFO] 
[2025-01-27 22:53:19] [INFO] epoch 4/6
[2025-01-27 23:21:31] [INFO] steps:  51%|█████     | 88/174 [1:25:30<1:23:33, 58.30s/it, avr_loss=0.409]
steps:  51%|█████     | 88/174 [1:25:30<1:23:33, 58.30s/it, avr_loss=0.409]
steps:  51%|█████     | 89/174 [1:26:28<1:22:35, 58.30s/it, avr_loss=0.409]
steps:  51%|█████     | 89/174 [1:26:28<1:22:35, 58.30s/it, avr_loss=0.412]
steps:  52%|█████▏    | 90/174 [1:27:26<1:21:36, 58.30s/it, avr_loss=0.412]
steps:  52%|█████▏    | 90/174 [1:27:26<1:21:36, 58.30s/it, avr_loss=0.42] 
steps:  52%|█████▏    | 91/174 [1:28:24<1:20:38, 58.30s/it, avr_loss=0.42]
steps:  52%|█████▏    | 91/174 [1:28:24<1:20:38, 58.30s/it, avr_loss=0.418]
steps:  53%|█████▎    | 92/174 [1:29:23<1:19:40, 58.30s/it, avr_loss=0.418]
steps:  53%|█████▎    | 92/174 [1:29:23<1:19:40, 58.30s/it, avr_loss=0.417]
steps:  53%|█████▎    | 93/174 [1:30:21<1:18:41, 58.30s/it, avr_loss=0.417]
steps:  53%|█████▎    | 93/174 [1:30:21<1:18:41, 58.30s/it, avr_loss=0.417]
steps:  54%|█████▍    | 94/174 [1:31:19<1:17:43, 58.30s/it, avr_loss=0.417]
steps:  54%|█████▍    | 94/174 [1:31:19<1:17:43, 58.30s/it, avr_loss=0.413]
steps:  55%|█████▍    | 95/174 [1:32:18<1:16:45, 58.30s/it, avr_loss=0.413]
steps:  55%|█████▍    | 95/174 [1:32:18<1:16:45, 58.30s/it, avr_loss=0.413]
steps:  55%|█████▌    | 96/174 [1:33:16<1:15:47, 58.30s/it, avr_loss=0.413]
steps:  55%|█████▌    | 96/174 [1:33:16<1:15:47, 58.30s/it, avr_loss=0.412]
steps:  56%|█████▌    | 97/174 [1:34:14<1:14:48, 58.29s/it, avr_loss=0.412]
steps:  56%|█████▌    | 97/174 [1:34:14<1:14:48, 58.29s/it, avr_loss=0.409]
steps:  56%|█████▋    | 98/174 [1:35:12<1:13:50, 58.30s/it, avr_loss=0.409]
steps:  56%|█████▋    | 98/174 [1:35:12<1:13:50, 58.30s/it, avr_loss=0.407]
steps:  57%|█████▋    | 99/174 [1:36:11<1:12:52, 58.30s/it, avr_loss=0.407]
steps:  57%|█████▋    | 99/174 [1:36:11<1:12:52, 58.30s/it, avr_loss=0.407]
steps:  57%|█████▋    | 100/174 [1:37:09<1:11:54, 58.30s/it, avr_loss=0.407]
steps:  57%|█████▋    | 100/174 [1:37:09<1:11:54, 58.30s/it, avr_loss=0.404]
steps:  58%|█████▊    | 101/174 [1:38:08<1:10:55, 58.30s/it, avr_loss=0.404]
steps:  58%|█████▊    | 101/174 [1:38:08<1:10:55, 58.30s/it, avr_loss=0.405]
steps:  59%|█████▊    | 102/174 [1:39:06<1:09:57, 58.30s/it, avr_loss=0.405]
steps:  59%|█████▊    | 102/174 [1:39:06<1:09:57, 58.30s/it, avr_loss=0.403]
steps:  59%|█████▉    | 103/174 [1:40:05<1:08:59, 58.31s/it, avr_loss=0.403]
steps:  59%|█████▉    | 103/174 [1:40:05<1:08:59, 58.31s/it, avr_loss=0.403]
steps:  60%|█████▉    | 104/174 [1:41:03<1:08:01, 58.31s/it, avr_loss=0.403]
steps:  60%|█████▉    | 104/174 [1:41:03<1:08:01, 58.31s/it, avr_loss=0.406]
steps:  60%|██████    | 105/174 [1:42:02<1:07:03, 58.31s/it, avr_loss=0.406]
steps:  60%|██████    | 105/174 [1:42:02<1:07:03, 58.31s/it, avr_loss=0.411]
steps:  61%|██████    | 106/174 [1:43:00<1:06:04, 58.30s/it, avr_loss=0.411]
steps:  61%|██████    | 106/174 [1:43:00<1:06:04, 58.30s/it, avr_loss=0.414]
steps:  61%|██████▏   | 107/174 [1:43:58<1:05:06, 58.30s/it, avr_loss=0.414]
steps:  61%|██████▏   | 107/174 [1:43:58<1:05:06, 58.30s/it, avr_loss=0.415]
steps:  62%|██████▏   | 108/174 [1:44:56<1:04:08, 58.30s/it, avr_loss=0.415]
steps:  62%|██████▏   | 108/174 [1:44:56<1:04:08, 58.30s/it, avr_loss=0.42] 
steps:  63%|██████▎   | 109/174 [1:45:55<1:03:09, 58.30s/it, avr_loss=0.42]
steps:  63%|██████▎   | 109/174 [1:45:55<1:03:09, 58.30s/it, avr_loss=0.419]
steps:  63%|██████▎   | 110/174 [1:46:53<1:02:11, 58.30s/it, avr_loss=0.419]
steps:  63%|██████▎   | 110/174 [1:46:53<1:02:11, 58.30s/it, avr_loss=0.42] 
steps:  64%|██████▍   | 111/174 [1:47:51<1:01:12, 58.30s/it, avr_loss=0.42]
steps:  64%|██████▍   | 111/174 [1:47:51<1:01:12, 58.30s/it, avr_loss=0.42]
steps:  64%|██████▍   | 112/174 [1:48:49<1:00:14, 58.30s/it, avr_loss=0.42]
steps:  64%|██████▍   | 112/174 [1:48:49<1:00:14, 58.30s/it, avr_loss=0.425]
steps:  65%|██████▍   | 113/174 [1:49:48<59:16, 58.30s/it, avr_loss=0.425]  
steps:  65%|██████▍   | 113/174 [1:49:48<59:16, 58.30s/it, avr_loss=0.433]
steps:  66%|██████▌   | 114/174 [1:50:46<58:18, 58.31s/it, avr_loss=0.433]
steps:  66%|██████▌   | 114/174 [1:50:46<58:18, 58.31s/it, avr_loss=0.433]
steps:  66%|██████▌   | 115/174 [1:51:45<57:20, 58.31s/it, avr_loss=0.433]
steps:  66%|██████▌   | 115/174 [1:51:45<57:20, 58.31s/it, avr_loss=0.432]
steps:  67%|██████▋   | 116/174 [1:52:43<56:21, 58.31s/it, avr_loss=0.432]
steps:  67%|██████▋   | 116/174 [1:52:43<56:21, 58.31s/it, avr_loss=0.429]
[2025-01-27 23:21:31] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux-000004.safetensors
[2025-01-27 23:21:31] [INFO] 
[2025-01-27 23:21:31] [INFO] epoch 5/6
[2025-01-27 23:49:42] [INFO] steps:  67%|██████▋   | 117/174 [1:53:42<55:23, 58.31s/it, avr_loss=0.429]
steps:  67%|██████▋   | 117/174 [1:53:42<55:23, 58.31s/it, avr_loss=0.43] 
steps:  68%|██████▊   | 118/174 [1:54:40<54:25, 58.31s/it, avr_loss=0.43]
steps:  68%|██████▊   | 118/174 [1:54:40<54:25, 58.31s/it, avr_loss=0.432]
steps:  68%|██████▊   | 119/174 [1:55:38<53:26, 58.31s/it, avr_loss=0.432]
steps:  68%|██████▊   | 119/174 [1:55:38<53:26, 58.31s/it, avr_loss=0.425]
steps:  69%|██████▉   | 120/174 [1:56:36<52:28, 58.31s/it, avr_loss=0.425]
steps:  69%|██████▉   | 120/174 [1:56:36<52:28, 58.31s/it, avr_loss=0.424]
steps:  70%|██████▉   | 121/174 [1:57:35<51:30, 58.31s/it, avr_loss=0.424]
steps:  70%|██████▉   | 121/174 [1:57:35<51:30, 58.31s/it, avr_loss=0.431]
steps:  70%|███████   | 122/174 [1:58:33<50:31, 58.31s/it, avr_loss=0.431]
steps:  70%|███████   | 122/174 [1:58:33<50:31, 58.31s/it, avr_loss=0.433]
steps:  71%|███████   | 123/174 [1:59:31<49:33, 58.30s/it, avr_loss=0.433]
steps:  71%|███████   | 123/174 [1:59:31<49:33, 58.30s/it, avr_loss=0.435]
steps:  71%|███████▏  | 124/174 [2:00:29<48:35, 58.30s/it, avr_loss=0.435]
steps:  71%|███████▏  | 124/174 [2:00:29<48:35, 58.30s/it, avr_loss=0.433]
steps:  72%|███████▏  | 125/174 [2:01:27<47:36, 58.30s/it, avr_loss=0.433]
steps:  72%|███████▏  | 125/174 [2:01:27<47:36, 58.30s/it, avr_loss=0.436]
steps:  72%|███████▏  | 126/174 [2:02:26<46:38, 58.30s/it, avr_loss=0.436]
steps:  72%|███████▏  | 126/174 [2:02:26<46:38, 58.30s/it, avr_loss=0.435]
steps:  73%|███████▎  | 127/174 [2:03:24<45:40, 58.30s/it, avr_loss=0.435]
steps:  73%|███████▎  | 127/174 [2:03:24<45:40, 58.30s/it, avr_loss=0.439]
steps:  74%|███████▎  | 128/174 [2:04:22<44:41, 58.30s/it, avr_loss=0.439]
steps:  74%|███████▎  | 128/174 [2:04:22<44:41, 58.30s/it, avr_loss=0.434]
steps:  74%|███████▍  | 129/174 [2:05:20<43:43, 58.30s/it, avr_loss=0.434]
steps:  74%|███████▍  | 129/174 [2:05:20<43:43, 58.30s/it, avr_loss=0.434]
steps:  75%|███████▍  | 130/174 [2:06:19<42:45, 58.30s/it, avr_loss=0.434]
steps:  75%|███████▍  | 130/174 [2:06:19<42:45, 58.30s/it, avr_loss=0.435]
steps:  75%|███████▌  | 131/174 [2:07:17<41:47, 58.30s/it, avr_loss=0.435]
steps:  75%|███████▌  | 131/174 [2:07:17<41:47, 58.30s/it, avr_loss=0.435]
steps:  76%|███████▌  | 132/174 [2:08:16<40:48, 58.31s/it, avr_loss=0.435]
steps:  76%|███████▌  | 132/174 [2:08:16<40:48, 58.31s/it, avr_loss=0.438]
steps:  76%|███████▋  | 133/174 [2:09:14<39:50, 58.31s/it, avr_loss=0.438]
steps:  76%|███████▋  | 133/174 [2:09:14<39:50, 58.31s/it, avr_loss=0.438]
steps:  77%|███████▋  | 134/174 [2:10:13<38:52, 58.31s/it, avr_loss=0.438]
steps:  77%|███████▋  | 134/174 [2:10:13<38:52, 58.31s/it, avr_loss=0.433]
steps:  78%|███████▊  | 135/174 [2:11:11<37:54, 58.31s/it, avr_loss=0.433]
steps:  78%|███████▊  | 135/174 [2:11:11<37:54, 58.31s/it, avr_loss=0.432]
steps:  78%|███████▊  | 136/174 [2:12:09<36:55, 58.31s/it, avr_loss=0.432]
steps:  78%|███████▊  | 136/174 [2:12:09<36:55, 58.31s/it, avr_loss=0.43] 
steps:  79%|███████▊  | 137/174 [2:13:08<35:57, 58.31s/it, avr_loss=0.43]
steps:  79%|███████▊  | 137/174 [2:13:08<35:57, 58.31s/it, avr_loss=0.426]
steps:  79%|███████▉  | 138/174 [2:14:06<34:59, 58.31s/it, avr_loss=0.426]
steps:  79%|███████▉  | 138/174 [2:14:06<34:59, 58.31s/it, avr_loss=0.427]
steps:  80%|███████▉  | 139/174 [2:15:04<34:00, 58.31s/it, avr_loss=0.427]
steps:  80%|███████▉  | 139/174 [2:15:04<34:00, 58.31s/it, avr_loss=0.426]
steps:  80%|████████  | 140/174 [2:16:03<33:02, 58.31s/it, avr_loss=0.426]
steps:  80%|████████  | 140/174 [2:16:03<33:02, 58.31s/it, avr_loss=0.424]
steps:  81%|████████  | 141/174 [2:17:01<32:04, 58.31s/it, avr_loss=0.424]
steps:  81%|████████  | 141/174 [2:17:01<32:04, 58.31s/it, avr_loss=0.42] 
steps:  82%|████████▏ | 142/174 [2:17:59<31:05, 58.31s/it, avr_loss=0.42]
steps:  82%|████████▏ | 142/174 [2:17:59<31:05, 58.31s/it, avr_loss=0.419]
steps:  82%|████████▏ | 143/174 [2:18:58<30:07, 58.31s/it, avr_loss=0.419]
steps:  82%|████████▏ | 143/174 [2:18:58<30:07, 58.31s/it, avr_loss=0.418]
steps:  83%|████████▎ | 144/174 [2:19:56<29:09, 58.31s/it, avr_loss=0.418]
steps:  83%|████████▎ | 144/174 [2:19:56<29:09, 58.31s/it, avr_loss=0.42] 
steps:  83%|████████▎ | 145/174 [2:20:55<28:11, 58.31s/it, avr_loss=0.42]
steps:  83%|████████▎ | 145/174 [2:20:55<28:11, 58.31s/it, avr_loss=0.417]
[2025-01-27 23:49:42] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux-000005.safetensors
[2025-01-27 23:49:42] [INFO] 
[2025-01-27 23:49:42] [INFO] epoch 6/6
[2025-01-28 00:17:58] [INFO] steps:  84%|████████▍ | 146/174 [2:21:53<27:12, 58.31s/it, avr_loss=0.417]
steps:  84%|████████▍ | 146/174 [2:21:53<27:12, 58.31s/it, avr_loss=0.425]
steps:  84%|████████▍ | 147/174 [2:22:52<26:14, 58.32s/it, avr_loss=0.425]
steps:  84%|████████▍ | 147/174 [2:22:52<26:14, 58.32s/it, avr_loss=0.423]
steps:  85%|████████▌ | 148/174 [2:23:50<25:16, 58.32s/it, avr_loss=0.423]
steps:  85%|████████▌ | 148/174 [2:23:50<25:16, 58.32s/it, avr_loss=0.425]
steps:  86%|████████▌ | 149/174 [2:24:49<24:17, 58.32s/it, avr_loss=0.425]
steps:  86%|████████▌ | 149/174 [2:24:49<24:17, 58.32s/it, avr_loss=0.425]
steps:  86%|████████▌ | 150/174 [2:25:47<23:19, 58.32s/it, avr_loss=0.425]
steps:  86%|████████▌ | 150/174 [2:25:47<23:19, 58.32s/it, avr_loss=0.422]
steps:  87%|████████▋ | 151/174 [2:26:46<22:21, 58.32s/it, avr_loss=0.422]
steps:  87%|████████▋ | 151/174 [2:26:46<22:21, 58.32s/it, avr_loss=0.419]
steps:  87%|████████▋ | 152/174 [2:27:44<21:23, 58.32s/it, avr_loss=0.419]
steps:  87%|████████▋ | 152/174 [2:27:44<21:23, 58.32s/it, avr_loss=0.419]
steps:  88%|████████▊ | 153/174 [2:28:43<20:24, 58.32s/it, avr_loss=0.419]
steps:  88%|████████▊ | 153/174 [2:28:43<20:24, 58.32s/it, avr_loss=0.423]
steps:  89%|████████▊ | 154/174 [2:29:41<19:26, 58.32s/it, avr_loss=0.423]
steps:  89%|████████▊ | 154/174 [2:29:41<19:26, 58.32s/it, avr_loss=0.417]
steps:  89%|████████▉ | 155/174 [2:30:39<18:28, 58.32s/it, avr_loss=0.417]
steps:  89%|████████▉ | 155/174 [2:30:39<18:28, 58.32s/it, avr_loss=0.423]
steps:  90%|████████▉ | 156/174 [2:31:38<17:29, 58.32s/it, avr_loss=0.423]
steps:  90%|████████▉ | 156/174 [2:31:38<17:29, 58.32s/it, avr_loss=0.419]
steps:  90%|█████████ | 157/174 [2:32:36<16:31, 58.32s/it, avr_loss=0.419]
steps:  90%|█████████ | 157/174 [2:32:36<16:31, 58.32s/it, avr_loss=0.421]
steps:  91%|█████████ | 158/174 [2:33:35<15:33, 58.32s/it, avr_loss=0.421]
steps:  91%|█████████ | 158/174 [2:33:35<15:33, 58.32s/it, avr_loss=0.424]
steps:  91%|█████████▏| 159/174 [2:34:33<14:34, 58.32s/it, avr_loss=0.424]
steps:  91%|█████████▏| 159/174 [2:34:33<14:34, 58.32s/it, avr_loss=0.423]
steps:  92%|█████████▏| 160/174 [2:35:31<13:36, 58.32s/it, avr_loss=0.423]
steps:  92%|█████████▏| 160/174 [2:35:31<13:36, 58.32s/it, avr_loss=0.424]
steps:  93%|█████████▎| 161/174 [2:36:30<12:38, 58.32s/it, avr_loss=0.424]
steps:  93%|█████████▎| 161/174 [2:36:30<12:38, 58.32s/it, avr_loss=0.42] 
steps:  93%|█████████▎| 162/174 [2:37:28<11:39, 58.33s/it, avr_loss=0.42]
steps:  93%|█████████▎| 162/174 [2:37:28<11:39, 58.33s/it, avr_loss=0.429]
steps:  94%|█████████▎| 163/174 [2:38:27<10:41, 58.33s/it, avr_loss=0.429]
steps:  94%|█████████▎| 163/174 [2:38:27<10:41, 58.33s/it, avr_loss=0.426]
steps:  94%|█████████▍| 164/174 [2:39:25<09:43, 58.33s/it, avr_loss=0.426]
steps:  94%|█████████▍| 164/174 [2:39:25<09:43, 58.33s/it, avr_loss=0.426]
steps:  95%|█████████▍| 165/174 [2:40:24<08:44, 58.33s/it, avr_loss=0.426]
steps:  95%|█████████▍| 165/174 [2:40:24<08:44, 58.33s/it, avr_loss=0.427]
steps:  95%|█████████▌| 166/174 [2:41:22<07:46, 58.33s/it, avr_loss=0.427]
steps:  95%|█████████▌| 166/174 [2:41:22<07:46, 58.33s/it, avr_loss=0.425]
steps:  96%|█████████▌| 167/174 [2:42:21<06:48, 58.33s/it, avr_loss=0.425]
steps:  96%|█████████▌| 167/174 [2:42:21<06:48, 58.33s/it, avr_loss=0.425]
steps:  97%|█████████▋| 168/174 [2:43:19<05:49, 58.33s/it, avr_loss=0.425]
steps:  97%|█████████▋| 168/174 [2:43:19<05:49, 58.33s/it, avr_loss=0.425]
steps:  97%|█████████▋| 169/174 [2:44:18<04:51, 58.33s/it, avr_loss=0.425]
steps:  97%|█████████▋| 169/174 [2:44:18<04:51, 58.33s/it, avr_loss=0.43] 
steps:  98%|█████████▊| 170/174 [2:45:16<03:53, 58.33s/it, avr_loss=0.43]
steps:  98%|█████████▊| 170/174 [2:45:16<03:53, 58.33s/it, avr_loss=0.431]
steps:  98%|█████████▊| 171/174 [2:46:15<02:55, 58.33s/it, avr_loss=0.431]
steps:  98%|█████████▊| 171/174 [2:46:15<02:55, 58.33s/it, avr_loss=0.431]
steps:  99%|█████████▉| 172/174 [2:47:13<01:56, 58.34s/it, avr_loss=0.431]
steps:  99%|█████████▉| 172/174 [2:47:13<01:56, 58.34s/it, avr_loss=0.434]
steps:  99%|█████████▉| 173/174 [2:48:12<00:58, 58.34s/it, avr_loss=0.434]
steps:  99%|█████████▉| 173/174 [2:48:12<00:58, 58.34s/it, avr_loss=0.433]
steps: 100%|██████████| 174/174 [2:49:10<00:00, 58.34s/it, avr_loss=0.433]
steps: 100%|██████████| 174/174 [2:49:10<00:00, 58.34s/it, avr_loss=0.434]
[2025-01-28 00:17:58] [INFO] saving checkpoint: /data/work/xiehao/fluxgym/outputs/girl-flux/girl-flux.safetensors
[2025-01-28 00:17:58] [INFO] steps: 100%|██████████| 174/174 [2:49:10<00:00, 58.34s/it, avr_loss=0.434]
[2025-01-28 00:18:02] [INFO] Command exited successfully
[2025-01-28 00:18:02] [INFO] Runner: <LogsViewRunner nb_logs=54 exit_code=0>

训练中,会在 /data/work/xiehao/fluxgym/outputs/tmallyc-flux 生成对应的lora模型。

本文参考:

Flux"炼丹炉"------fluxgym安装教程-CSDN博客

相关推荐
爱研究的小牛19 小时前
Deepseek技术浅析(一)
人工智能·深度学习·自然语言处理·aigc
kakaZhui19 小时前
【llm对话系统】LLM 大模型Prompt 怎么写?
人工智能·chatgpt·prompt·aigc·llama
程序员小灰1 天前
DeepSeek遭大规模网络攻击,攻击IP均来自美国!
人工智能·aigc·openai
kakaZhui1 天前
【llm对话系统】大模型源码分析之 LLaMA 模型的 Masked Attention
人工智能·python·chatgpt·aigc·llama
kakaZhui1 天前
【llm对话系统】大模型源码分析之llama模型的long context更长上下文支持
pytorch·深度学习·chatgpt·aigc·llama
Sherlock Ma1 天前
qwen2.5-vl:阿里开源超强多模态大模型(包含使用方法、微调方法介绍)
人工智能·pytorch·深度学习·语言模型·nlp·aigc·transformer
正宗咸豆花3 天前
Prompt 编写进阶指南
人工智能·ai·prompt·aigc·个人开发
好评笔记3 天前
多模态论文笔记——TECO
论文阅读·人工智能·深度学习·机器学习·面试·大模型·aigc
云起无垠3 天前
第84期 | GPTSecurity周报
人工智能·gpt·aigc