自定义数据集,使用 PyTorch 框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

在本文中,我们将展示如何使用 NumPy 创建自定义数据集,利用 PyTorch 实现一个简单的逻辑回归模型,并在训练完成后保存该模型,最后加载模型并用它进行预测。

1. 创建自定义数据集

首先,我们使用 NumPy 创建一个简单的二分类数据集。假设我们的数据集包含两个特征。

复制代码
import numpy as np

# 生成随机数据
np.random.seed(42)
X = np.random.randn(100, 2)  # 100个样本,2个特征
y = (X[:, 0] + X[:, 1] > 0).astype(int)  # 标签为1或0

# 打印数据集的前5个样本
print(X[:5], y[:5])

2. 构建逻辑回归模型

接下来,我们使用 PyTorch 来构建一个简单的逻辑回归模型。PyTorch 提供了 torch.nn.Module 类,能够轻松实现神经网络模型。

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

# 转换 NumPy 数据为 PyTorch 张量
X_tensor = torch.tensor(X, dtype=torch.float32)
y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)

# 创建数据集并加载
dataset = TensorDataset(X_tensor, y_tensor)
dataloader = DataLoader(dataset, batch_size=10, shuffle=True)

# 定义逻辑回归模型
class LogisticRegressionModel(nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = nn.Linear(2, 1)  # 2个输入特征,1个输出

    def forward(self, x):
        return torch.sigmoid(self.linear(x))

# 初始化模型
model = LogisticRegressionModel()

3. 训练模型

接下来,我们定义损失函数和优化器,并训练模型。

复制代码
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型
epochs = 1000
for epoch in range(epochs):
    for inputs, labels in dataloader:
        optimizer.zero_grad()  # 清空梯度
        outputs = model(inputs)  # 前向传播
        loss = criterion(outputs, labels)  # 计算损失
        loss.backward()  # 反向传播
        optimizer.step()  # 更新权重

    if (epoch + 1) % 100 == 0:
        print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')

4. 保存模型

模型训练完成后,我们可以将模型保存到文件中。PyTorch 提供了 torch.save() 方法来保存模型的状态字典。

复制代码
# 保存模型
torch.save(model.state_dict(), 'logistic_regression_model.pth')
print("模型已保存!")

5. 加载模型并进行预测

我们可以加载保存的模型,并对新数据进行预测。

复制代码
# 加载模型
loaded_model = LogisticRegressionModel()
loaded_model.load_state_dict(torch.load('logistic_regression_model.pth'))
loaded_model.eval()  # 切换到评估模式

# 进行预测
with torch.no_grad():
    test_data = torch.tensor([[1.5, -0.5]], dtype=torch.float32)
    prediction = loaded_model(test_data)
    print(f'预测值: {prediction.item():.4f}')

6. 总结

在这篇博客中,我们展示了如何使用 NumPy 创建一个简单的自定义数据集,并使用 PyTorch 实现一个逻辑回归模型。我们还展示了如何保存训练好的模型,并加载模型进行预测。通过保存和加载模型,我们可以在不同的时间或环境中重复使用已经训练好的模型,而不需要重新训练它。

相关推荐
工藤学编程42 分钟前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技4 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了6 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案7 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记