【LeetCode 刷题】二叉树-修改与构造

此博客为《代码随想录》二叉树章节的学习笔记,主要内容为二叉树的修改与构造相关的题目解析。

文章目录

226. 翻转二叉树

题目链接

python 复制代码
class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        if root is None:
            return
        left = self.invertTree(root.left)
        right = self.invertTree(root.right)
        root.right = left
        root.left = right
        return root
  • 上述代码为后序遍历版本,即先递归处理左、右节点,之后处理中间节点
  • 前序遍历也可正确求解,但中序遍历不可正确求解

105.从前序与中序遍历序列构造二叉树

题目链接

python 复制代码
class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
        if not preorder:
            return None
        left_size = inorder.index(preorder[0])
        left = self.buildTree(preorder[1:1+left_size], inorder[:left_size])
        right = self.buildTree(preorder[1+left_size:], inorder[left_size+1:])
        return TreeNode(preorder[0], left, right)
  • list.index(x) 返回查找对象的索引位置,如果没有找到对象则抛出异常。因此此种构造方法只能处理节点值不重复的二叉树
  • 优化点:
    • 用哈希表预处理 inorder 每个元素的下标,可以 O(1) 查到preorder[0] 在 inorder 的位置,从而 O(1) 知道左子树的大小
    • 把递归参数改成子数组下标区间(左闭右开区间)的左右端点,从而避免复制数组

106.从中序与后序遍历序列构造二叉树

题目链接

python 复制代码
class Solution:
    def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
        if not inorder:
            return None
        left_size = inorder.index(postorder[-1])
        left = self.buildTree(inorder[:left_size], postorder[:left_size])
        right = self.buildTree(inorder[left_size+1:], postorder[left_size:-1])
        return TreeNode(postorder[-1], left, right)
  • 与上题类似,注意左右子树区间范围

654.最大二叉树

题目链接

python 复制代码
class Solution:
    def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
        if not nums:
            return None
        left_size = nums.index(max(nums))
        left = self.constructMaximumBinaryTree(nums[0:left_size])
        right = self.constructMaximumBinaryTree(nums[left_size+1:])
        return TreeNode(max(nums), left, right)

617.合并二叉树

题目链接

python 复制代码
class Solution:
    def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root1:
            return root2
        if not root2:
            return root1
        left = self.mergeTrees(root1.left, root2.left)
        right = self.mergeTrees(root1.right, root2.right)
        return TreeNode(root1.val + root2.val, left, right)
相关推荐
YGGP12 分钟前
【Golang】LeetCode 128. 最长连续序列
leetcode
寻星探路4 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
你撅嘴真丑6 小时前
第九章-数字三角形
算法
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
ValhallaCoder7 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮7 小时前
AI 视觉连载1:像素
算法
智驱力人工智能7 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
猫头虎7 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
孞㐑¥8 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法
八零后琐话8 小时前
干货:程序员必备性能分析工具——Arthas火焰图
开发语言·python