【LeetCode 刷题】二叉树-修改与构造

此博客为《代码随想录》二叉树章节的学习笔记,主要内容为二叉树的修改与构造相关的题目解析。

文章目录

226. 翻转二叉树

题目链接

python 复制代码
class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        if root is None:
            return
        left = self.invertTree(root.left)
        right = self.invertTree(root.right)
        root.right = left
        root.left = right
        return root
  • 上述代码为后序遍历版本,即先递归处理左、右节点,之后处理中间节点
  • 前序遍历也可正确求解,但中序遍历不可正确求解

105.从前序与中序遍历序列构造二叉树

题目链接

python 复制代码
class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
        if not preorder:
            return None
        left_size = inorder.index(preorder[0])
        left = self.buildTree(preorder[1:1+left_size], inorder[:left_size])
        right = self.buildTree(preorder[1+left_size:], inorder[left_size+1:])
        return TreeNode(preorder[0], left, right)
  • list.index(x) 返回查找对象的索引位置,如果没有找到对象则抛出异常。因此此种构造方法只能处理节点值不重复的二叉树
  • 优化点:
    • 用哈希表预处理 inorder 每个元素的下标,可以 O(1) 查到preorder[0] 在 inorder 的位置,从而 O(1) 知道左子树的大小
    • 把递归参数改成子数组下标区间(左闭右开区间)的左右端点,从而避免复制数组

106.从中序与后序遍历序列构造二叉树

题目链接

python 复制代码
class Solution:
    def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
        if not inorder:
            return None
        left_size = inorder.index(postorder[-1])
        left = self.buildTree(inorder[:left_size], postorder[:left_size])
        right = self.buildTree(inorder[left_size+1:], postorder[left_size:-1])
        return TreeNode(postorder[-1], left, right)
  • 与上题类似,注意左右子树区间范围

654.最大二叉树

题目链接

python 复制代码
class Solution:
    def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
        if not nums:
            return None
        left_size = nums.index(max(nums))
        left = self.constructMaximumBinaryTree(nums[0:left_size])
        right = self.constructMaximumBinaryTree(nums[left_size+1:])
        return TreeNode(max(nums), left, right)

617.合并二叉树

题目链接

python 复制代码
class Solution:
    def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root1:
            return root2
        if not root2:
            return root1
        left = self.mergeTrees(root1.left, root2.left)
        right = self.mergeTrees(root1.right, root2.right)
        return TreeNode(root1.val + root2.val, left, right)
相关推荐
用户25191624271111 小时前
Python之语言特点
python
刘立军11 小时前
使用pyHugeGraph查询HugeGraph图数据
python·graphql
聚客AI12 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
数据智能老司机14 小时前
精通 Python 设计模式——创建型设计模式
python·设计模式·架构
大怪v15 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
数据智能老司机15 小时前
精通 Python 设计模式——SOLID 原则
python·设计模式·架构
c8i17 小时前
django中的FBV 和 CBV
python·django
c8i17 小时前
python中的闭包和装饰器
python
惯导马工17 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农18 小时前
【React用到的一些算法】游标和栈
算法·react.js