引言
Kafka 的分区策略决定了生产者发送的消息会被分配到哪个分区中,合理的分区策略有助于实现负载均衡、提高消息处理效率以及满足特定的业务需求。
轮询策略(默认)
- 轮询策略是 Kafka 默认的分区策略(当消息没有指定键时)。生产者会按照顺序依次将消息发送到各个分区中,确保每个分区都能均匀地接收到消息,从而实现负载均衡。简单高效,能使各个分区的消息量相对均衡,充分利用每个分区的存储和处理能力。
java
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class RoundRobinProducer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 10; i++) {
ProducerRecord<String, String> record = new ProducerRecord<>("testTopic", "message-" + i);
producer.send(record);
}
producer.close();
}
}
随机策略
- 随机策略会随机地将消息分配到一个分区中。这种策略在某些情况下可以实现一定程度的负载均衡,但由于是随机分配,可能会导致分区之间的消息分布不够均匀。可以通过自定义分区器来实现随机策略。
java
import org.apache.kafka.clients.producer.*;
import java.util.List;
import java.util.Map;
import java.util.Random;
public class RandomPartitioner implements Partitioner {
private final Random random = new Random();
@Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
return random.nextInt(partitions.size());
}
@Override
public void close() {}
@Override
public void configure(Map<String, ?> configs) {}
}
// 使用随机分区器的生产者示例
public class RandomProducer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("partitioner.class", "RandomPartitioner");
Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 10; i++) {
ProducerRecord<String, String> record = new ProducerRecord<>("testTopic", "message-" + i);
producer.send(record);
}
producer.close();
}
}
按键哈希策略
- 当消息指定了键时,Kafka 会根据键的哈希值将消息分配到特定的分区中。相同键的消息会被分配到同一个分区,这有助于保证具有相同业务逻辑的消息顺序性。可以保证消息的局部有序性,例如在处理用户相关的消息时,将同一个用户的消息发送到同一个分区,方便后续的处理和分析。
java
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class KeyBasedProducer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 10; i++) {
ProducerRecord<String, String> record = new ProducerRecord<>("testTopic", "user-" + (i % 2), "message-" + i);
producer.send(record);
}
producer.close();
}
}
自定义分区策略(实现接口)
-
当上述默认策略无法满足业务需求时,可以自定义分区策略。通过实现
org.apache.kafka.clients.producer.Partitioner
接口,重写partition
方法来实现自定义的分区逻辑。例如,根据消息的某些特定字段(如时间、地理位置等)来进行分区,以满足特定的业务需求。
java
import org.apache.kafka.clients.producer.*;
import java.util.List;
import java.util.Map;
public class CustomPartitioner implements Partitioner {
@Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
// 自定义分区逻辑,这里简单示例根据消息值的长度分区
String message = (String) value;
return message.length() % partitions.size();
}
@Override
public void close() {}
@Override
public void configure(Map<String, ?> configs) {}
}
// 使用自定义分区器的生产者示例
public class CustomProducer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("partitioner.class", "CustomPartitioner");
Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 10; i++) {
ProducerRecord<String, String> record = new ProducerRecord<>("testTopic", "message-" + i);
producer.send(record);
}
producer.close();
}
}