本地部署 DeepSeek-R1:简单易上手,AI 随时可用!

🎯 先看看本地部署的运行效果

为了测试本地部署的 DeepSeek-R1 是否真的够强,我们随便问了一道经典的"鸡兔同笼"问题 ,考察它的推理能力

📌 问题示例:
笼子里有鸡和兔,总共有 35 只头,94 只脚,问笼中各有几只鸡和兔?

🔹 AI 的推理过程

DeepSeek-R1 详细推导了方程,并一步步计算出答案 ,展现了清晰的思考逻辑。

📸

🔹 AI 的最终答案

思考后,AI 准确给出了最终答案 ,推理严谨,逻辑缜密。

📸

可以看到,本地运行的 DeepSeek-R1 推理能力极强,完全不输在线 AI!🔥

🛠️ 3 步完成本地部署,轻松上手!


🔹 第 1 步:下载 LM Studio(本地 AI 交互软件)

LM Studio 是一个美观、易用的本地 AI 运行环境,比 Ollama 更加友好。

🔗 官方下载地址https://lmstudio.ai/

💡 如果官网下载受限,可使用我提供的百度云链接(请私信获取)。

📸


🔹 第 2 步:下载 DeepSeek-R1 模型(AI 的"大脑")

DeepSeek-R1 需要以 GGUF 格式 运行,因此我们从 ModelScope 下载官方优化的模型文件。

🔗 模型下载地址:

https://modelscope.cn/models/lmstudio-community

📌 如何选择合适的模型?
我使用的显卡是 RTX 4070Ti Super(16GB 显存) ,选择的是 14B 模型。你可以根据自己的显存选择更大或更小的模型版本,以保证流畅运行。

📸

📌 下载方法(使用 Git 命令行):

    1. 安装 Git(Git 官网)
    1. 打开 CMD 终端,输入以下命令下载模型文件:

    git clone https://modelscope.cn/models/lmstudio-community/DeepSeek-R1-Distill-Qwen-14B-GGUF.git

    1. 等待下载完成(文件较大,建议保持网络稳定)。

📸


🔹 第 3 步:在 LM Studio 加载模型,开启 AI 对话!

    1. 打开 LM Studio ,找到加载模型的选项(如下图红框所示)。
    1. 选择刚刚下载的 DeepSeek-R1 GGUF 文件,并加载进软件。
    1. 点击下方"聊天框",开始聊天!🎉

📸

📌 个性化设置

  • 温度(Temperature):控制 AI 的创造性

  • 最大输出长度(Max Tokens):控制回答的字数

  • 响应速度优化

📸


🎯 体验总结:本地 AI 的真正魅力!

无需联网,随时随地运行 AI

隐私安全,不上传数据到云端

推理能力强,媲美 ChatGPT

完全免费,不用订阅 API

📢 你成功部署了吗?欢迎在评论区分享你的使用体验🔥

相关推荐
AI technophile9 分钟前
OpenCV计算机视觉实战(4)——计算机视觉核心技术全解析
人工智能·opencv·计算机视觉
云和数据.ChenGuang12 分钟前
人工智能 机器学习期末考试题
开发语言·人工智能·python·机器学习·毕业设计
珊珊而川1 小时前
3.1监督微调
人工智能
我是小伍同学1 小时前
基于卷积神经网络和Pyqt5的猫狗识别小程序
人工智能·python·神经网络·qt·小程序·cnn
界面开发小八哥3 小时前
界面控件DevExpress WinForms v25.1新功能预览 - 功能区组件全新升级
人工智能·.net·界面控件·winform·devexpress
zhz52144 小时前
开源数字人框架 AWESOME-DIGITAL-HUMAN 技术解析与应用指南
人工智能·ai·机器人·开源·ai编程·ai数字人·智能体
1296004524 小时前
pytorch基础的学习
人工智能·pytorch·学习
沉默媛4 小时前
RuntimeError: expected scalar type ComplexDouble but found Float
人工智能·pytorch·深度学习
契合qht53_shine4 小时前
NLP基础
人工智能·自然语言处理
闭月之泪舞4 小时前
YOLO目标检测算法
人工智能·yolo·目标检测