本地部署 DeepSeek-R1:简单易上手,AI 随时可用!

🎯 先看看本地部署的运行效果

为了测试本地部署的 DeepSeek-R1 是否真的够强,我们随便问了一道经典的"鸡兔同笼"问题 ,考察它的推理能力

📌 问题示例:
笼子里有鸡和兔,总共有 35 只头,94 只脚,问笼中各有几只鸡和兔?

🔹 AI 的推理过程

DeepSeek-R1 详细推导了方程,并一步步计算出答案 ,展现了清晰的思考逻辑。

📸

🔹 AI 的最终答案

思考后,AI 准确给出了最终答案 ,推理严谨,逻辑缜密。

📸

可以看到,本地运行的 DeepSeek-R1 推理能力极强,完全不输在线 AI!🔥

🛠️ 3 步完成本地部署,轻松上手!


🔹 第 1 步:下载 LM Studio(本地 AI 交互软件)

LM Studio 是一个美观、易用的本地 AI 运行环境,比 Ollama 更加友好。

🔗 官方下载地址https://lmstudio.ai/

💡 如果官网下载受限,可使用我提供的百度云链接(请私信获取)。

📸


🔹 第 2 步:下载 DeepSeek-R1 模型(AI 的"大脑")

DeepSeek-R1 需要以 GGUF 格式 运行,因此我们从 ModelScope 下载官方优化的模型文件。

🔗 模型下载地址:

https://modelscope.cn/models/lmstudio-community

📌 如何选择合适的模型?
我使用的显卡是 RTX 4070Ti Super(16GB 显存) ,选择的是 14B 模型。你可以根据自己的显存选择更大或更小的模型版本,以保证流畅运行。

📸

📌 下载方法(使用 Git 命令行):

    1. 安装 Git(Git 官网)
    1. 打开 CMD 终端,输入以下命令下载模型文件:

    git clone https://modelscope.cn/models/lmstudio-community/DeepSeek-R1-Distill-Qwen-14B-GGUF.git

    1. 等待下载完成(文件较大,建议保持网络稳定)。

📸


🔹 第 3 步:在 LM Studio 加载模型,开启 AI 对话!

    1. 打开 LM Studio ,找到加载模型的选项(如下图红框所示)。
    1. 选择刚刚下载的 DeepSeek-R1 GGUF 文件,并加载进软件。
    1. 点击下方"聊天框",开始聊天!🎉

📸

📌 个性化设置

  • 温度(Temperature):控制 AI 的创造性

  • 最大输出长度(Max Tokens):控制回答的字数

  • 响应速度优化

📸


🎯 体验总结:本地 AI 的真正魅力!

无需联网,随时随地运行 AI

隐私安全,不上传数据到云端

推理能力强,媲美 ChatGPT

完全免费,不用订阅 API

📢 你成功部署了吗?欢迎在评论区分享你的使用体验🔥

相关推荐
无心水1 小时前
【分布式利器:腾讯TSF】10、TSF故障排查与架构评审实战:Java架构师从救火到防火的生产哲学
java·人工智能·分布式·架构·限流·分布式利器·腾讯tsf
小鸡吃米…7 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫8 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)8 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan8 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维8 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS8 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd9 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟9 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然9 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析