自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

python 复制代码
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import precision_score, recall_score, f1_score

# 数据准备
class1_points = np.array([[1.9, 1.2],
                          [1.5, 2.1],
                          [1.9, 0.5],
                          [1.5, 0.9],
                          [0.9, 1.2],
                          [1.1, 1.7],
                          [1.4, 1.1]])
class2_points = np.array([[3.2, 3.2],
                          [3.7, 2.9],
                          [3.2, 2.6],
                          [1.7, 3.3],
                          [3.4, 2.6],
                          [4.1, 2.3],
                          [3.0, 2.9]])

x_train = np.concatenate((class1_points, class2_points), axis=0)
y_train = np.concatenate((np.zeros(len(class1_points)), np.ones(len(class2_points))))

x_train_tensor = torch.tensor(x_train, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32)

# 设置随机种子
seed = 42
torch.manual_seed(seed)

# 定义模型
class LogisticRegreModel(nn.Module):
    def __init__(self):
        super(LogisticRegreModel, self).__init__()
        self.fc = nn.Linear(2, 1)

    def forward(self, x):
        x = self.fc(x)
        x = torch.sigmoid(x)
        return x

model = LogisticRegreModel()

# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.05)

# 训练模型
epochs = 1000
for epoch in range(1, epochs + 1):
    y_pred = model(x_train_tensor)
    loss = criterion(y_pred, y_train_tensor.unsqueeze(1))
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if epoch % 50 == 0 or epoch == 1:
        print(f"epoch: {epoch}, loss: {loss.item()}")

# 保存模型
torch.save(model.state_dict(), 'model.pth')

# 加载模型
model = LogisticRegreModel()
model.load_state_dict(torch.load('model.pth'))
# 设置模型为评估模式
model.eval()

# 进行预测
with torch.no_grad():
    y_pred = model(x_train_tensor)
    y_pred_class = (y_pred > 0.5).float().squeeze()

# 计算精确度、召回率和F1分数
precision = precision_score(y_train_tensor.numpy(), y_pred_class.numpy())
recall = recall_score(y_train_tensor.numpy(), y_pred_class.numpy())
f1 = f1_score(y_train_tensor.numpy(), y_pred_class.numpy())

print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")
相关推荐
koo3643 分钟前
李宏毅机器学习笔记17
人工智能·笔记·机器学习
心无旁骛~11 分钟前
PIL与OpenCV图像读取的颜色格式陷阱:RGB vs BGR
人工智能·opencv·计算机视觉
程序员大雄学编程23 分钟前
「深度学习笔记1」深度学习全面解析:从基本概念到未来趋势
人工智能·笔记·深度学习
sensen_kiss34 分钟前
INT305 Machine Learning 机器学习 Pt.4
人工智能·机器学习
WWZZ202536 分钟前
快速上手大模型:机器学习1
人工智能·深度学习·机器学习·计算机视觉·机器人·slam
沫儿笙1 小时前
川崎焊接机器人弧焊气体节约
人工智能·机器人
新知图书1 小时前
多模态大模型的应用场景
人工智能·大模型应用开发·大模型应用
Giser探索家1 小时前
遥感卫星升轨 / 降轨技术解析:对图像光照、对比度的影响及工程化应用
大数据·人工智能·算法·安全·计算机视觉·分类
Mr数据杨1 小时前
【ComfyUI】Animate单人物角色视频替换
人工智能·计算机视觉·音视频
lisw051 小时前
AI眼镜:作为人机交互新范式的感知延伸与智能融合终端
人工智能·人机交互·软件工程