自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

python 复制代码
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import precision_score, recall_score, f1_score

# 数据准备
class1_points = np.array([[1.9, 1.2],
                          [1.5, 2.1],
                          [1.9, 0.5],
                          [1.5, 0.9],
                          [0.9, 1.2],
                          [1.1, 1.7],
                          [1.4, 1.1]])
class2_points = np.array([[3.2, 3.2],
                          [3.7, 2.9],
                          [3.2, 2.6],
                          [1.7, 3.3],
                          [3.4, 2.6],
                          [4.1, 2.3],
                          [3.0, 2.9]])

x_train = np.concatenate((class1_points, class2_points), axis=0)
y_train = np.concatenate((np.zeros(len(class1_points)), np.ones(len(class2_points))))

x_train_tensor = torch.tensor(x_train, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32)

# 设置随机种子
seed = 42
torch.manual_seed(seed)

# 定义模型
class LogisticRegreModel(nn.Module):
    def __init__(self):
        super(LogisticRegreModel, self).__init__()
        self.fc = nn.Linear(2, 1)

    def forward(self, x):
        x = self.fc(x)
        x = torch.sigmoid(x)
        return x

model = LogisticRegreModel()

# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.05)

# 训练模型
epochs = 1000
for epoch in range(1, epochs + 1):
    y_pred = model(x_train_tensor)
    loss = criterion(y_pred, y_train_tensor.unsqueeze(1))
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if epoch % 50 == 0 or epoch == 1:
        print(f"epoch: {epoch}, loss: {loss.item()}")

# 保存模型
torch.save(model.state_dict(), 'model.pth')

# 加载模型
model = LogisticRegreModel()
model.load_state_dict(torch.load('model.pth'))
# 设置模型为评估模式
model.eval()

# 进行预测
with torch.no_grad():
    y_pred = model(x_train_tensor)
    y_pred_class = (y_pred > 0.5).float().squeeze()

# 计算精确度、召回率和F1分数
precision = precision_score(y_train_tensor.numpy(), y_pred_class.numpy())
recall = recall_score(y_train_tensor.numpy(), y_pred_class.numpy())
f1 = f1_score(y_train_tensor.numpy(), y_pred_class.numpy())

print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")
相关推荐
飞哥数智坊8 小时前
Qoder vs CodeBuddy,刚起步就收费,值吗?
人工智能·ai编程
强盛小灵通专卖员8 小时前
闪电科创,深度学习辅导
人工智能·sci·小论文·大论文·延毕
通街市密人有8 小时前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
大千AI助手9 小时前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
蚂蚁RichLab前端团队9 小时前
🚀🚀🚀 RichLab - 花呗前端团队招贤纳士 - 【转岗/内推/社招】
前端·javascript·人工智能
智数研析社9 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
救救孩子把9 小时前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
yzx9910139 小时前
接口协议全解析:从HTTP到gRPC,如何选择适合你的通信方案?
网络·人工智能·网络协议·flask·pygame
只说证事10 小时前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@10 小时前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器