自定义数据集 使用scikit-learn中svm的包实现svm分类

数据集生成:

  • 使用 make_classification 函数生成包含1000个样本的数据集,设置20个特征,其中10个是有信息的特征,类别数为2,通过设置 random_state = 42 保证每次运行生成的数据相同。

数据划分:

  • 使用 train_test_split 函数将生成的数据集划分为训练集和测试集,测试集占比为20%,同样通过 random_state = 42 保证划分的一致性。

SVM模型:

  • 初始化 SVC 类,这里使用线性核函数 kernel='linear' 。还有其他核函数可供选择,如 'rbf' (径向基函数核)、 'poly' (多项式核)等,不同的核函数适用于不同的数据分布。

  • 使用 fit 方法将模型拟合到训练集数据 X_train 和对应的标签 y_train 上。

预测与评估:

  • 使用训练好的模型对测试集 X_test 进行预测,得到预测标签 y_pred 。

  • 使用 accuracy_score 函数计算预测准确率,评估模型在测试集上的性能。

import numpy as np

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

生成自定义数据集

X, y = make_classification(n_samples=1000, n_features=20, n_informative=10, n_classes=2, random_state=42)

划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

初始化并拟合SVM模型

svm_classifier = SVC(kernel='linear')

svm_classifier.fit(X_train, y_train)

预测

y_pred = svm_classifier.predict(X_test)

计算准确率

accuracy = accuracy_score(y_test, y_pred)

print(f"Accuracy of SVM classifier: {accuracy}")

相关推荐
riveting9 分钟前
SD2351核心板:重构AI视觉产业价值链的“超级节点”
大数据·linux·图像处理·人工智能·重构·智能硬件
Lilith的AI学习日记17 分钟前
大语言模型中的幻觉现象深度解析:原理、评估与缓解策略
人工智能·语言模型·自然语言处理·aigc·ai编程
闭月之泪舞1 小时前
OpenCv高阶(十)——光流估计
人工智能·opencv·计算机视觉
layneyao1 小时前
大语言模型(LLM)的Prompt Engineering:从入门到精通
人工智能·语言模型·prompt
边缘计算社区2 小时前
FPGA与边缘AI:计算革命的前沿力量
人工智能·fpga开发
飞哥数智坊2 小时前
打工人周末充电:15条AI资讯助你领先一小步
人工智能
Tech Synapse2 小时前
基于CARLA与PyTorch的自动驾驶仿真系统全栈开发指南
人工智能·opencv·sqlite
layneyao2 小时前
深度强化学习(DRL)实战:从AlphaGo到自动驾驶
人工智能·机器学习·自动驾驶
海特伟业3 小时前
隧道调频广播覆盖的实现路径:隧道无线广播技术赋能行车安全升级,隧道汽车广播收音系统助力隧道安全管理升级
人工智能
CareyWYR3 小时前
每周AI论文速递(250421-250425)
人工智能