自定义数据集 使用scikit-learn中svm的包实现svm分类

数据集生成:

  • 使用 make_classification 函数生成包含1000个样本的数据集,设置20个特征,其中10个是有信息的特征,类别数为2,通过设置 random_state = 42 保证每次运行生成的数据相同。

数据划分:

  • 使用 train_test_split 函数将生成的数据集划分为训练集和测试集,测试集占比为20%,同样通过 random_state = 42 保证划分的一致性。

SVM模型:

  • 初始化 SVC 类,这里使用线性核函数 kernel='linear' 。还有其他核函数可供选择,如 'rbf' (径向基函数核)、 'poly' (多项式核)等,不同的核函数适用于不同的数据分布。

  • 使用 fit 方法将模型拟合到训练集数据 X_train 和对应的标签 y_train 上。

预测与评估:

  • 使用训练好的模型对测试集 X_test 进行预测,得到预测标签 y_pred 。

  • 使用 accuracy_score 函数计算预测准确率,评估模型在测试集上的性能。

import numpy as np

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

生成自定义数据集

X, y = make_classification(n_samples=1000, n_features=20, n_informative=10, n_classes=2, random_state=42)

划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

初始化并拟合SVM模型

svm_classifier = SVC(kernel='linear')

svm_classifier.fit(X_train, y_train)

预测

y_pred = svm_classifier.predict(X_test)

计算准确率

accuracy = accuracy_score(y_test, y_pred)

print(f"Accuracy of SVM classifier: {accuracy}")

相关推荐
JXL186017 分钟前
神经网络-LossFunction
人工智能·深度学习·神经网络
黑心萝卜三条杠25 分钟前
LIDAR:用于结构裂缝多模态分割的轻量级自适应提示感知融合视觉曼巴
人工智能
MYZR134 分钟前
汽车电子:现代汽车的“神经中枢“
人工智能·汽车·核心板·ssd2351
黑心萝卜三条杠44 分钟前
Mobile U-ViT:深度可分离卷积与 U 形 ViT 的创新融合,实现高效医学图像分割新突破
人工智能
overFitBrain1 小时前
机器学习-Logistic Regression
人工智能·机器学习
音视频牛哥1 小时前
从 AI 到实时视频通道:基于模块化架构的低延迟直播全链路实践
人工智能·opencv·yolo·计算机视觉·音视频·大牛直播sdk·ai人工智能
cver1231 小时前
建筑物实例分割数据集-9,700 张图片 城市规划与发展 灾害评估与应急响应 房地产市场分析 智慧城市管理 地理信息系统(GIS) 环境影响评估
人工智能·安全·目标检测·机器学习·计算机视觉·目标跟踪·智慧城市
深藏blue472 小时前
GPT-5 使用限制与国内升级全攻略(免费 / Plus / Pro)【2025 最新】
人工智能
代码里程碑2 小时前
Gemini CLI 自定义命令的妙用
人工智能·程序员
GoodTime2 小时前
Datawhale AI夏令营 -「多模态RAG图文问答挑战赛」
人工智能·python·算法