自定义数据集 使用scikit-learn中SVM的包实现SVM分类

生成自定义数据集

生成一个简单的二维数据集,包含两类数据点,分别用不同的标签表示。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成数据
np.random.seed(42)
X = np.r_[np.random.randn(100, 2) - [2, 2], np.random.randn(100, 2) + [2, 2]]
y = [0] * 100 + [1] * 100

# 可视化数据
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Custom Dataset')
plt.show()
使用SVM进行分类

接下来,使用scikit-learn中的SVC类来实现SVM分类。

python 复制代码
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建SVM分类器
clf = SVC(kernel='linear', C=1.0)

# 训练模型
clf.fit(X_train, y_train)

# 预测
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
可视化分类结果

为了更直观地查看SVM分类的效果,可以绘制决策边界。

python 复制代码
# 绘制决策边界
def plot_decision_boundary(clf, X, y):
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),
                         np.arange(y_min, y_max, 0.01))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, alpha=0.8, cmap=plt.cm.Paired)
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolor='k')
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.title('SVM Decision Boundary')
    plt.show()

# 绘制决策边界
plot_decision_boundary(clf, X_test, y_test)
相关推荐
过往入尘土5 小时前
全面了解机器语言之kmeans
人工智能·机器学习·支持向量机
西猫雷婶6 小时前
python学智能算法(三十六)|SVM-拉格朗日函数求解(中)-软边界
人工智能·python·算法·机器学习·支持向量机
CONDIMENTTTT17 小时前
[机器学习]05-基于Fisher线性判别的鸢尾花数据集分类
人工智能·分类·数据挖掘
归辞...17 小时前
「iOS」————分类与扩展
ios·分类·cocoa
dlraba80217 小时前
机器学习-----SVM(支持向量机)算法简介
算法·机器学习·支持向量机
Monkey的自我迭代21 小时前
支持向量机(SVM)算法依赖的数学知识详解
算法·机器学习·支持向量机
Sunhen_Qiletian2 天前
《深入浅出K-means算法:从原理到实战全解析》预告(提纲)
人工智能·机器学习·支持向量机
Giser探索家2 天前
什么是2米分辨率卫星影像数据?
大数据·人工智能·数码相机·算法·分类·云计算
万粉变现经纪人2 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘transformers’问题
人工智能·python·beautifulsoup·pandas·scikit-learn·pip·ipython
cver1232 天前
塑料可回收物检测数据集-10,000 张图片 智能垃圾分类系统 环保回收自动化 智慧城市环卫管理 企业环保合规检测 教育环保宣传 供应链包装优化
人工智能·安全·计算机视觉·目标跟踪·分类·自动化·智慧城市