自定义数据集 使用scikit-learn中SVM的包实现SVM分类

生成自定义数据集

生成一个简单的二维数据集,包含两类数据点,分别用不同的标签表示。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成数据
np.random.seed(42)
X = np.r_[np.random.randn(100, 2) - [2, 2], np.random.randn(100, 2) + [2, 2]]
y = [0] * 100 + [1] * 100

# 可视化数据
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Custom Dataset')
plt.show()
使用SVM进行分类

接下来,使用scikit-learn中的SVC类来实现SVM分类。

python 复制代码
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建SVM分类器
clf = SVC(kernel='linear', C=1.0)

# 训练模型
clf.fit(X_train, y_train)

# 预测
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
可视化分类结果

为了更直观地查看SVM分类的效果,可以绘制决策边界。

python 复制代码
# 绘制决策边界
def plot_decision_boundary(clf, X, y):
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),
                         np.arange(y_min, y_max, 0.01))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, alpha=0.8, cmap=plt.cm.Paired)
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolor='k')
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.title('SVM Decision Boundary')
    plt.show()

# 绘制决策边界
plot_decision_boundary(clf, X_test, y_test)
相关推荐
奋斗者1号5 小时前
分类数据处理全解析:从独热编码到高维特征优化
人工智能·机器学习·分类
pljnb14 小时前
SVM(支持向量机)
人工智能·机器学习·支持向量机
AI_RSER16 小时前
基于 Google Earth Engine 的南京江宁区土地利用分类(K-Means 聚类)
算法·机器学习·分类·kmeans·聚类·遥感·gee
小小毛桃17 小时前
在分类任务中,显著性分析
人工智能·分类·数据挖掘
AI_RSER20 小时前
基于 Google Earth Engine (GEE) 的土地利用变化监测
python·随机森林·分类·土地利用·gee·遥感影像·landsat
蹦蹦跳跳真可爱5891 天前
Python----深度学习(基于深度学习Pytroch簇分类,圆环分类,月牙分类)
人工智能·pytorch·python·深度学习·分类
搞机小能手1 天前
六个能够白嫖学习资料的网站
笔记·学习·分类
量子-Alex2 天前
【遥感图像分类】【综述】遥感影像分类:全面综述与应用
人工智能·分类·数据挖掘
SophiaSSSSS3 天前
无标注文本的行业划分(行业分类)算法 —— 无监督或自监督学习
学习·算法·分类
胡耀超3 天前
5.第五章:数据分类的方法论
大数据·人工智能·分类·数据挖掘·数据治理·数据分类·分类分级