自定义数据集 使用scikit-learn中SVM的包实现SVM分类

生成自定义数据集

生成一个简单的二维数据集,包含两类数据点,分别用不同的标签表示。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成数据
np.random.seed(42)
X = np.r_[np.random.randn(100, 2) - [2, 2], np.random.randn(100, 2) + [2, 2]]
y = [0] * 100 + [1] * 100

# 可视化数据
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Custom Dataset')
plt.show()
使用SVM进行分类

接下来,使用scikit-learn中的SVC类来实现SVM分类。

python 复制代码
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建SVM分类器
clf = SVC(kernel='linear', C=1.0)

# 训练模型
clf.fit(X_train, y_train)

# 预测
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
可视化分类结果

为了更直观地查看SVM分类的效果,可以绘制决策边界。

python 复制代码
# 绘制决策边界
def plot_decision_boundary(clf, X, y):
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),
                         np.arange(y_min, y_max, 0.01))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, alpha=0.8, cmap=plt.cm.Paired)
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolor='k')
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.title('SVM Decision Boundary')
    plt.show()

# 绘制决策边界
plot_decision_boundary(clf, X_test, y_test)
相关推荐
java1234_小锋4 小时前
Scikit-learn Python机器学习 - 特征预处理 - 标准化 (Standardization):StandardScaler
python·机器学习·scikit-learn
Daisy_JuJuJu9 小时前
【科研成果速递-IJGIS】如何描述与分类移动对象的时空模式?一个新的分类框架与体系!
分类·数据挖掘·科研·运动模式·移动对象
JJJJ_iii9 小时前
【左程云算法03】对数器&算法和数据结构大致分类
数据结构·算法·分类
赴33512 小时前
残差网络 迁移学习对食物分类案例的改进
人工智能·分类·迁移学习·resnet18
代码欢乐豆14 小时前
scikit-learn零基础配置(含python、anaconda)
python·机器学习·scikit-learn
DreamNotOver17 小时前
基于Scikit-learn集成学习模型的情感分析研究与实现
python·scikit-learn·集成学习
THMAIL19 小时前
机器学习从入门到精通 - Transformer颠覆者:BERT与预训练模型实战解析
python·随机森林·机器学习·分类·bootstrap·bert·transformer
非门由也1 天前
《sklearn机器学习——聚类性能指标》Davies-Bouldin Index (戴维斯-博尔丁指数)
人工智能·机器学习·支持向量机
limengshi1383921 天前
人工智能学习:LR和SVM的联系与区别?
人工智能·算法·机器学习·支持向量机
荼蘼1 天前
迁移学习实战:基于 ResNet18 的食物分类
机器学习·分类·迁移学习