自定义数据集 使用scikit-learn中SVM的包实现SVM分类

生成自定义数据集

生成一个简单的二维数据集,包含两类数据点,分别用不同的标签表示。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成数据
np.random.seed(42)
X = np.r_[np.random.randn(100, 2) - [2, 2], np.random.randn(100, 2) + [2, 2]]
y = [0] * 100 + [1] * 100

# 可视化数据
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Custom Dataset')
plt.show()
使用SVM进行分类

接下来,使用scikit-learn中的SVC类来实现SVM分类。

python 复制代码
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建SVM分类器
clf = SVC(kernel='linear', C=1.0)

# 训练模型
clf.fit(X_train, y_train)

# 预测
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
可视化分类结果

为了更直观地查看SVM分类的效果,可以绘制决策边界。

python 复制代码
# 绘制决策边界
def plot_decision_boundary(clf, X, y):
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),
                         np.arange(y_min, y_max, 0.01))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, alpha=0.8, cmap=plt.cm.Paired)
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolor='k')
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.title('SVM Decision Boundary')
    plt.show()

# 绘制决策边界
plot_decision_boundary(clf, X_test, y_test)
相关推荐
超龄超能程序猿5 小时前
YOLOv8 五大核心模型:从检测到分类的介绍
yolo·分类·数据挖掘
廋到被风吹走9 小时前
【数据库】【MySQL】分库分表策略 分类、优势与短板
数据库·mysql·分类
studytosky12 小时前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
Piar1231sdafa15 小时前
木结构建筑元素识别与分类:基于Faster R-CNN的高精度检测方法
分类·r语言·cnn
ASD123asfadxv16 小时前
基于YOLO11的汽车车灯状态识别与分类_C3k2-wConv改进_1
分类·数据挖掘·汽车
roman_日积跬步-终至千里19 小时前
【计算机视觉(11)】损失函数与优化基础篇:如何训练线性分类器
机器学习·支持向量机·计算机视觉
Java后端的Ai之路20 小时前
【分析式AI】-机器学习的分类以及学派
人工智能·机器学习·分类·aigc·分析式ai
aini_lovee20 小时前
使用BP神经网络进行故障数据分类的方法和MATLAB实现
神经网络·matlab·分类
Katecat9966320 小时前
基于显微镜图像的体液细胞分类与异常检测:改进RetinaNet模型实现
人工智能·分类·数据挖掘