自定义数据集 使用scikit-learn中svm的包实现svm分类

引入必要的库

复制代码
import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report

生成自定义数据集

复制代码
X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=42)

划分训练集和数据集

复制代码
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=50)

创建并训练 SVM 分类器

复制代码
# 创建 SVM 分类器实例,使用径向基函数(RBF)作为核函数
clf = SVC(kernel='rbf', random_state=50)
# 使用训练集对模型进行训练
clf.fit(X_train, y_train)

模型预测与评估

复制代码
# 使用训练好的模型对测试集进行预测
y_pred = clf.predict(X_test)
# 计算模型在测试集上的准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"模型准确率: {accuracy * 100:.2f}%")

# 打印详细的分类报告,包含精确率、召回率、F1 值等信息
print("分类报告:")
print(classification_report(y_test, y_pred))

结果展示

相关推荐
小憩-1 小时前
【机器学习】吴恩达机器学习笔记
人工智能·笔记·机器学习
却道天凉_好个秋1 小时前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
UQI-LIUWJ1 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL1 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
却道天凉_好个秋1 小时前
计算机视觉(八):开运算和闭运算
人工智能·计算机视觉·开运算与闭运算
无风听海1 小时前
神经网络之深入理解偏置
人工智能·神经网络·机器学习·偏置
JoinApper1 小时前
目标检测系列-Yolov5下载及运行
人工智能·yolo·目标检测
飞哥数智坊2 小时前
即梦4.0实测:我真想对PS说“拜拜”了!
人工智能
fantasy_arch2 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
Ai工具分享2 小时前
视频画质差怎么办?AI优化视频清晰度技术原理与实战应用
人工智能·音视频