自定义数据集 使用scikit-learn中svm的包实现svm分类

引入必要的库

复制代码
import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report

生成自定义数据集

复制代码
X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=42)

划分训练集和数据集

复制代码
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=50)

创建并训练 SVM 分类器

复制代码
# 创建 SVM 分类器实例,使用径向基函数(RBF)作为核函数
clf = SVC(kernel='rbf', random_state=50)
# 使用训练集对模型进行训练
clf.fit(X_train, y_train)

模型预测与评估

复制代码
# 使用训练好的模型对测试集进行预测
y_pred = clf.predict(X_test)
# 计算模型在测试集上的准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"模型准确率: {accuracy * 100:.2f}%")

# 打印详细的分类报告,包含精确率、召回率、F1 值等信息
print("分类报告:")
print(classification_report(y_test, y_pred))

结果展示

相关推荐
roman_日积跬步-终至千里15 分钟前
【计算机视觉(16)】语义理解-训练神经网络1_激活_预处理_初始化_BN
人工智能·神经网络·计算机视觉
AI营销实验室16 分钟前
原圈科技AI CRM系统引领2025文旅行业智能升级新趋势
人工智能·科技
AI营销前沿18 分钟前
私域AI首倡者韩剑,原圈科技领航AI营销
大数据·人工智能
咚咚王者18 分钟前
人工智能之数学基础 概率论与统计:第一章 基础概念
人工智能·概率论
_Li.18 分钟前
机器学习-集成学习
人工智能·机器学习·集成学习
Percent_bigdata25 分钟前
数据治理平台选型解析:AI大模型与智能体如何重塑企业数字基座
大数据·人工智能
牛客企业服务27 分钟前
AI面试监考:破解在线面试作弊难题
人工智能·面试·职场和发展
面包会有的,牛奶也会有的。31 分钟前
AI 测试平台:WHartTest V1.3.0 更新优化架构
人工智能
极度畅想1 小时前
脑电模型实战系列(三):基于 KNN 的 DEAP 脑电情绪识别 KNN 算法与 Canberra 距离深度剖析(三)
机器学习·knn·脑机接口·情绪识别·bci·canberra距离
2501_941982051 小时前
结合 AI 视觉:使用 OCR 识别企业微信聊天记录中的图片信息
人工智能·ocr·企业微信