zephyr devicetree

Input files

There are four types of devicetree input files:

  • sources (.dts)

  • includes (.dtsi)

  • overlays (.overlay)

  • bindings (.yaml)

The devicetree files inside the zephyr directory look like this:

复制代码
boards/<ARCH>/<BOARD>/<BOARD>.dts
dts/common/skeleton.dtsi
dts/<ARCH>/.../<SOC>.dtsi
dts/bindings/.../binding.yaml

Generally speaking, every supported board has a BOARD.dts file describing its hardware. For example, the reel_board has boards/phytec/reel_board/reel_board.dts.

BOARD.dts includes one or more .dtsi files. These .dtsi files describe the CPU or system-on-chip Zephyr runs on, perhaps by including other .dtsi files. They can also describe other common hardware features shared by multiple boards. In addition to these includes, BOARD.dts also describes the board's specific hardware.

The dts/common directory contains skeleton.dtsi, a minimal include file for defining a complete devicetree. Architecture-specific subdirectories (dts/<ARCH>) contain .dtsi files for CPUs or SoCs which extend skeleton.dtsi.

The C preprocessor is run on all devicetree files to expand macro references, and includes are generally done with #include <filename> directives, even though DTS has a /include/ "<filename>" syntax.

BOARD.dts can be extended or modified using overlays . Overlays are also DTS files; the .overlay extension is just a convention which makes their purpose clear. Overlays adapt the base devicetree for different purposes:

  • Zephyr applications can use overlays to enable a peripheral that is disabled by default, select a sensor on the board for an application specific purpose, etc. Along with Configuration System (Kconfig), this makes it possible to reconfigure the kernel and device drivers without modifying source code.

  • Overlays are also used when defining Shields.

The build system automatically picks up .overlay files stored in certain locations. It is also possible to explicitly list the overlays to include, via the DTC_OVERLAY_FILE CMake variable. See Set devicetree overlays for details.

The build system combines BOARD.dts and any .overlay files by concatenating them, with the overlays put last. This relies on DTS syntax which allows merging overlapping definitions of nodes in the devicetree. See Example: FRDM-K64F and Hexiwear K64 for an example of how this works (in the context of .dtsi files, but the principle is the same for overlays). Putting the contents of the .overlay files last allows them to override BOARD.dts.

Devicetree bindings (which are YAML files) are essentially glue. They describe the contents of devicetree sources, includes, and overlays in a way that allows the build system to generate C macros usable by device drivers and applications. The dts/bindings directory contains bindings.

Scripts and tools

The following libraries and scripts, located in scripts/dts/, create output files from input files. Their sources have extensive documentation.

dtlib.py

A low-level DTS parsing library.

edtlib.py

A library layered on top of dtlib that uses bindings to interpret properties and give a higher-level view of the devicetree. Uses dtlib to do the DTS parsing.

gen_defines.py

A script that uses edtlib to generate C preprocessor macros from the devicetree and bindings.

In addition to these, the standard dtc (devicetree compiler) tool is run on the final devicetree if it is installed on your system. This is just to catch errors or warnings. The output is unused. Boards may need to pass dtc additional flags, e.g. for warning suppression. Board directories can contain a file named pre_dt_board.cmake which configures these extra flags, like this:

复制代码
list(APPEND EXTRA_DTC_FLAGS "-Wno-simple_bus_reg")

Output files

These are created in your application's build directory.

Warning

Don't include the header files directly. Devicetree access from C/C++ explains what to do instead.

<build>/zephyr/zephyr.dts.pre

The preprocessed DTS source. This is an intermediate output file, which is input to gen_defines.py and used to create zephyr.dts and devicetree_generated.h.

<build>/zephyr/include/generated/zephyr/devicetree_generated.h

The generated macros and additional comments describing the devicetree. Included by devicetree.h.

<build>/zephyr/zephyr.dts

The final merged devicetree. This file is output by gen_defines.py. It is useful for debugging any issues. If the devicetree compiler dtc is installed, it is also run on this file, to catch any additional warnings or errors.

A devicetree on its own is only half the story for describing hardware, as it is a relatively unstructured format. Devicetree bindings provide the other half.

A devicetree binding declares requirements on the contents of nodes, and provides semantic information about the contents of valid nodes. Zephyr devicetree bindings are YAML files in a custom format (Zephyr does not use the dt-schema tools used by the Linux kernel).

相关推荐
想要成为糕手。22 分钟前
stm32-RTC时实时钟
stm32·嵌入式硬件·实时音视频
Czzzzlq2 小时前
STM32基础教程——对射式红外传感器计数实验
c语言·stm32·单片机·嵌入式硬件·mcu
集大周杰伦2 小时前
ARM Cortex-M 内存映射详解:如何基于寄存器直接读写 寄存器映射方式编码程序 直接操作硬件寄存器来控制 MCU
arm开发·stm32·单片机·内存映射·arm cortex-m·地址映射·寄存器编码
最爱是生活2 小时前
STM32之软件SPI
stm32·单片机·嵌入式硬件
summer__77773 小时前
3.3.2 用仿真图实现点灯效果
单片机·proteus
辰哥单片机设计5 小时前
STM32项目分享:STM32智能窗户
单片机·嵌入式硬件
雷门大师姐12 小时前
14.DS18B20温度传感器
单片机·嵌入式硬件
触角0101000113 小时前
OLED屏幕开发全解析:从硬件设计到物联网显示实战 | 零基础入门STM32第五十二步
驱动开发·stm32·单片机·嵌入式硬件·物联网
蓑衣客VS索尼克14 小时前
无感方波开环强拖总结
经验分享·单片机·学习
傍晚冰川16 小时前
【江协科技STM32】ADC数模转换器-学习笔记
笔记·科技·stm32·单片机·嵌入式硬件·学习