zephyr devicetree

Input files

There are four types of devicetree input files:

  • sources (.dts)

  • includes (.dtsi)

  • overlays (.overlay)

  • bindings (.yaml)

The devicetree files inside the zephyr directory look like this:

复制代码
boards/<ARCH>/<BOARD>/<BOARD>.dts
dts/common/skeleton.dtsi
dts/<ARCH>/.../<SOC>.dtsi
dts/bindings/.../binding.yaml

Generally speaking, every supported board has a BOARD.dts file describing its hardware. For example, the reel_board has boards/phytec/reel_board/reel_board.dts.

BOARD.dts includes one or more .dtsi files. These .dtsi files describe the CPU or system-on-chip Zephyr runs on, perhaps by including other .dtsi files. They can also describe other common hardware features shared by multiple boards. In addition to these includes, BOARD.dts also describes the board's specific hardware.

The dts/common directory contains skeleton.dtsi, a minimal include file for defining a complete devicetree. Architecture-specific subdirectories (dts/<ARCH>) contain .dtsi files for CPUs or SoCs which extend skeleton.dtsi.

The C preprocessor is run on all devicetree files to expand macro references, and includes are generally done with #include <filename> directives, even though DTS has a /include/ "<filename>" syntax.

BOARD.dts can be extended or modified using overlays . Overlays are also DTS files; the .overlay extension is just a convention which makes their purpose clear. Overlays adapt the base devicetree for different purposes:

  • Zephyr applications can use overlays to enable a peripheral that is disabled by default, select a sensor on the board for an application specific purpose, etc. Along with Configuration System (Kconfig), this makes it possible to reconfigure the kernel and device drivers without modifying source code.

  • Overlays are also used when defining Shields.

The build system automatically picks up .overlay files stored in certain locations. It is also possible to explicitly list the overlays to include, via the DTC_OVERLAY_FILE CMake variable. See Set devicetree overlays for details.

The build system combines BOARD.dts and any .overlay files by concatenating them, with the overlays put last. This relies on DTS syntax which allows merging overlapping definitions of nodes in the devicetree. See Example: FRDM-K64F and Hexiwear K64 for an example of how this works (in the context of .dtsi files, but the principle is the same for overlays). Putting the contents of the .overlay files last allows them to override BOARD.dts.

Devicetree bindings (which are YAML files) are essentially glue. They describe the contents of devicetree sources, includes, and overlays in a way that allows the build system to generate C macros usable by device drivers and applications. The dts/bindings directory contains bindings.

Scripts and tools

The following libraries and scripts, located in scripts/dts/, create output files from input files. Their sources have extensive documentation.

dtlib.py

A low-level DTS parsing library.

edtlib.py

A library layered on top of dtlib that uses bindings to interpret properties and give a higher-level view of the devicetree. Uses dtlib to do the DTS parsing.

gen_defines.py

A script that uses edtlib to generate C preprocessor macros from the devicetree and bindings.

In addition to these, the standard dtc (devicetree compiler) tool is run on the final devicetree if it is installed on your system. This is just to catch errors or warnings. The output is unused. Boards may need to pass dtc additional flags, e.g. for warning suppression. Board directories can contain a file named pre_dt_board.cmake which configures these extra flags, like this:

复制代码
list(APPEND EXTRA_DTC_FLAGS "-Wno-simple_bus_reg")

Output files

These are created in your application's build directory.

Warning

Don't include the header files directly. Devicetree access from C/C++ explains what to do instead.

<build>/zephyr/zephyr.dts.pre

The preprocessed DTS source. This is an intermediate output file, which is input to gen_defines.py and used to create zephyr.dts and devicetree_generated.h.

<build>/zephyr/include/generated/zephyr/devicetree_generated.h

The generated macros and additional comments describing the devicetree. Included by devicetree.h.

<build>/zephyr/zephyr.dts

The final merged devicetree. This file is output by gen_defines.py. It is useful for debugging any issues. If the devicetree compiler dtc is installed, it is also run on this file, to catch any additional warnings or errors.

A devicetree on its own is only half the story for describing hardware, as it is a relatively unstructured format. Devicetree bindings provide the other half.

A devicetree binding declares requirements on the contents of nodes, and provides semantic information about the contents of valid nodes. Zephyr devicetree bindings are YAML files in a custom format (Zephyr does not use the dt-schema tools used by the Linux kernel).

相关推荐
晶振厂家-晶发电子2 天前
晶振在5G时代的角色:高精度时钟的核心支撑
单片机·嵌入式硬件·5g·晶振·电子元器件·晶振知识
F137298015572 天前
WD5030A 芯片,12V降5V,输出电流12A,电路设计
stm32·单片机·嵌入式硬件·汽车·51单片机
小莞尔2 天前
【51单片机】【protues仿真】基于51单片机的篮球计时计分器系统
c语言·stm32·单片机·嵌入式硬件·51单片机
三佛科技-187366133972 天前
分享机械键盘MCU解决方案
单片机·嵌入式硬件·计算机外设
李永奉2 天前
51单片机-使用IIC通信协议实现EEPROM模块教程
单片机·嵌入式硬件·51单片机
工大一只猿2 天前
51单片机学习
嵌入式硬件·学习·51单片机
小莞尔2 天前
【51单片机】【protues仿真】 基于51单片机八路抢答器系统
c语言·开发语言·单片机·嵌入式硬件·51单片机
风_峰2 天前
Ubuntu Linux SD卡分区操作
嵌入式硬件·ubuntu·fpga开发
bing_feilong2 天前
STM32精准控制水流
单片机·嵌入式硬件
Hello_Embed2 天前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件