实际操作 检测缺陷刀片

号he

找到目标图像的缺陷位置,首先思路为对图像进行预处理,灰度-二值化-针对图像进行轮廓分析

//定义结构元素
Mat se = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
morphologyEx(thre, tc, MORPH_OPEN, se, Point(-1, -1), 1);

目标图形为矩形,RECT,大概在3,3可以自己调整 位置在中心-1,-1.与开操作对图像进行处理

if (rect.height > (height / 2)) {
continue;
}
if (area < 150) {
continue;
}根据不同的素材来做筛选,例如此类型就是以图形的行和面积来作为筛选条件,

1,rectangle(frame, rect, Scalar(0, 0, 255), 2, 8, 0);
drawContours(image, contours, t, Scalar(0, 0, 255), 2, 8);效果

2,rectangle(frame, rect, Scalar(0, 0, 255), 2, 8, 0);
drawContours(frame, contours, t, Scalar(0, 0, 255), 2, 8);效果

做好框架处理后进行目标工件的排序处理,此列以冒泡排序从小到大排序

void sort_box(vector<Rect>& boxes) {

int size = boxes.size();

for (int i = 0; i < size - 1; i++) {

for (int j = i; j < size; j++) {

int x = boxes[j].x;

int y = boxes[j].y;

if (y < boxes[i].y) {

Rect temp = boxes[i];

boxes[i] = boxes[j];

boxes[j] = temp;

}

}

}

}

进行排序好后可以从putText来验证排序结果,初始为6-0,改好后为0-6



前期的图像处理完毕,后面的思路要对模板图像以及后面的图像进行对比生成mask来确认具有缺陷的刀片。

tpl为刚才观察到的形态良好的工件,将其提取后与其他工件进行对比做差,对Mask进行开操作后观察

将白色部分的尺寸打印出来作为筛选

将白色像素大于50的打印出来

运行后发现出现了误检测,因为刀片宽度不统一,所以容易识别错误,所以需要在已经检测到的关键框架进行进一步的筛选。很明显的可以看到最后一个被误检测。首先对筛选出来的图像进行进一步处理

这样可以通过find来更加严谨的找到我们需要的有缺陷的工件。

相关推荐
水如烟6 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学6 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19826 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮7 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手7 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋7 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-7 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView7 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7777 小时前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云7 小时前
Claude Code:进入dash模式
人工智能