C++六大默认成员函数

C++六大默认成员函数

C++中的六大默认成员函数是编译器在特定条件下自动生成的成员函数,用于管理对象的生命周期和资源操作。它们分别是:

默认构造函数

  • 作用:初始化对象,当类没有显式定义任何构造函数时生成。

  • 生成条件:用户未定义任何构造函数。

  • 注意:若类有其他构造函数(如带参数的构造函数),需显式使用 = default 声明默认构造函数。

cpp 复制代码
class Person
{
public:
	//Person()
	//{

	//} 不写的话默认自动生成
	void GetAge()
	{
		std::cout << _age << std::endl;
	}
private:
	int _age;
};

int main()
{
	Person p;
	p.GetAge();
}

其特征如下:

  1. 函数名与类名相同
  2. 无返回值。
  3. 对象实例化时编译器自动调用对应的构造函数。
  4. 构造函数可以重载
  5. 如果类中没有显式定义构造函数,则C++编译器会自动生成一个无参的默认构造函数,一旦用户显式定义编译器将不再生成
  6. 编译器生成默认的构造函数会对自定类型成员调用的它的默认成员
    函数。C++11 中针对内置类型成员不初始化的缺陷,又打了补丁,即:内置类型成员变量在类中声明时可以给默认值。

默认析构函数

  • 作用:释放对象资源,默认析构函数调用成员变量的析构函数。

  • 生成条件:用户未定义析构函数。

  • 注意:若类管理动态资源(如堆内存),需自定义析构函数以避免内存泄漏

cpp 复制代码
class Person
{
public:
	//Person()
	//{

	//} 不写的话默认自动生成
	void GetAge()
	{
		std::cout << _age << std::endl;
	}

	~Person()
	{

	}
private:
	int _age;
};

int main()
{
	Person p;
	p.GetAge();
}

RAII技术

RAII(Resource Acquisition Is Initialization,资源获取即初始化)是C++中一种管理资源的编程技术。它通过将资源的生命周期与对象的生命周期绑定在一起,利用C++的构造函数和析构函数来自动管理资源,从而避免了手动分配和释放资源可能带来的问题,如内存泄漏、资源未正确释放等。

RAII的核心思想

  • 资源在对象构造时获取:当一个对象被创建时,它的构造函数负责获取所需的资源(例如,动态内存分配、文件打开、网络连接等)。
  • 资源在对象销毁时释放:当对象离开作用域或被显式删除时,其析构函数会自动释放之前获取的资源。

优点

  1. 异常安全性:由于资源管理由构造和析构函数自动处理,即使程序中抛出了异常,也能确保资源得到正确释放。
  2. 简化代码 :开发者不需要手动跟踪每个资源的状态,并且可以在不使用显式的try-finally块的情况下保证资源的释放。
  3. 防止资源泄露:只要对象被正确地创建并最终销毁,资源就会被正确释放。

示例

以下是一个简单的例子,展示了如何使用RAII来管理动态分配的内存:

cpp 复制代码
#include <iostream>

class ResourceHandler {
private:
    int* data;
public:
    // 构造函数:资源获取
    ResourceHandler() {
        data = new int(10); // 分配资源
        std::cout << "Resource acquired." << std::endl;
    }

    // 析构函数:资源释放
    ~ResourceHandler() {
        delete data; // 释放资源
        std::cout << "Resource released." << std::endl;
    }

    void showData() const {
        std::cout << "Data: " << *data << std::endl;
    }
};

void useResource() {
    ResourceHandler handler;
    handler.showData();
    // 不需要手动释放资源,handler离开作用域时会自动调用析构函数
}

int main() {
    useResource();
    return 0;
}

在这个例子中,ResourceHandler类负责管理一个整数类型的动态分配内存。构造函数在对象创建时分配资源,而析构函数在对象销毁时释放这些资源。这样就确保了无论函数useResource如何退出(正常结束或因异常退出),资源都会被正确释放。

应用场景

RAII不仅限于内存管理,还可以应用于其他资源类型,如文件句柄、网络套接字、数据库连接等。标准库中的智能指针(如std::unique_ptrstd::shared_ptr)、锁机制(如std::lock_guardstd::unique_lock)都是RAII原则的实际应用案例。通过使用这些工具,可以有效地减少资源管理错误,提高代码的安全性和可靠性。

默认拷贝构造

  • 声明形式:ClassName(const ClassName&)

  • 作用:通过已有对象初始化新对象,默认执行浅拷贝。

  • 生成条件:用户未定义拷贝构造函数。

  • 注意:若类包含指针或动态资源,需自定义深拷贝防止重复释放。

cpp 复制代码
class Person
{
public:
	Person()
	{

	}

	Person(const Person& person)
	{
		this->_age = person._age;
	}

	~Person()
	{

	}

	void GetAge()
	{
		std::cout << _age << std::endl;
	}
private:
	int _age;
};

int main()
{
	Person p;
	p.GetAge();
}

深拷贝和浅拷贝

cpp 复制代码
class Stack
{
public:
	//初始化
	Stack()
	{
		_array = new int[20];
	}

	//默认生成拷贝构造

	//析构
	~Stack()
	{
		delete[] _array;
	}
private:
	int* _array;
	size_t _size;
	size_t _capacity;
};

int main()
{
	Stack s1;

	Stack s2(s1);
}

这里我没有写实际的拷贝构造函数,这里s2调用的默认的拷贝构造,所以s2_array的地址就是s1中_array的地址,这就叫浅拷贝:

这样代码就会有问题,因为一个地址会被析构两次:
正确的方法应该是给s2的array开辟一块新的空间:

cpp 复制代码
class Stack
{
public:
	//初始化
	Stack()
	{
		_array = new int[20];
	}

	Stack(const Stack& st)
	{
		_array = new int[10];
		_size = st._size;
		_capacity = st._capacity;
	}

	//析构
	~Stack()
	{
		delete[] _array;
	}
private:
	int* _array;
	size_t _size;
	size_t _capacity;
};

int main()
{
	Stack s1;

	Stack s2(s1);
}

这样的拷贝我们称为深拷贝 ,再次运行程序:

默认拷贝赋值运算符

  • 声明形式:ClassName& operator=(const ClassName&)

  • 作用:将已有对象的值赋给另一个对象,默认浅拷贝。

  • 生成条件:用户未定义拷贝赋值运算符。

  • 注意:需处理自赋值问题,并在资源管理时实现深拷贝。

cpp 复制代码
class Stack
{
public:
	//初始化
	Stack()
	{
		_array = new int[20];
	}

	Stack(const Stack& st)
	{
		_array = new int[10];
		_size = st._size;
		_capacity = st._capacity;
	}

	Stack& operator=(const Stack& st)
	{
		if (this != &st)
		{
			_array = new int[10];
			_size = st._size;
			_capacity = st._capacity;
		}

		return *this;

	}

	//析构
	~Stack()
	{
		delete[] _array;
	}
private:
	int* _array;
	size_t _size;
	size_t _capacity;
};

int main()
{
	Stack s1;

	Stack s2;

	s2 = s1;
}

移动构造函数(C++11起)

  • 声明形式:ClassName(ClassName&&)

  • 作用:通过右值引用"窃取"资源,避免深拷贝开销。

  • 生成条件:用户未定义拷贝操作、移动操作或析构函数。

  • 注意:移动后源对象应处于有效但未定义状态(如空指针)。

cpp 复制代码
class Stack
{
public:
	//初始化
	Stack()
	{
		_array = new int[20];
	}

	Stack(const Stack& st)
	{
		_array = new int[10];
		_size = st._size;
		_capacity = st._capacity;
	}

	Stack& operator=(const Stack& st)
	{
		if (this != &st)
		{
			_array = new int[10];
			_size = st._size;
			_capacity = st._capacity;
		}

		return *this;

	}

	void swap(Stack& st)
	{
		std::swap(_array, st._array);
		std::swap(_size, st._size);
		std::swap(_capacity, st._capacity);
	}

	//移动构造函数
	Stack(Stack&& st):_array(nullptr), _size(0), _capacity(0)
	{
		swap(st);
	}

	//析构
	~Stack()
	{
		delete[] _array;
	}
private:
	int* _array;
	size_t _size;
	size_t _capacity;
};

int main()
{
	Stack s1;

	Stack s2(std::move(s1));
}

默认移动赋值运算符(C++11起)

  • 声明形式:ClassName& operator=(ClassName&&)

  • 作用:通过右值引用转移资源所有权。

  • 生成条件:同移动构造函数。

  • 注意:需正确处理自移动赋值。

cpp 复制代码
class Stack
{
public:
	//初始化
	Stack()
	{
		_array = new int[20];
	}

	Stack(const Stack& st)
	{
		_array = new int[10];
		_size = st._size;
		_capacity = st._capacity;
	}

	Stack& operator=(const Stack& st)
	{
		if (this != &st)
		{
			_array = new int[10];
			_size = st._size;
			_capacity = st._capacity;
		}

		return *this;

	}

	void swap(Stack& st)
	{
		std::swap(_array, st._array);
		std::swap(_size, st._size);
		std::swap(_capacity, st._capacity);
	}

	//移动构造函数
	Stack(Stack&& st):_array(nullptr), _size(0), _capacity(0)
	{
		swap(st);
	}

	//移动复制构造
	Stack& operator=(Stack&& st)
	{
		swap(st);

		st._array = nullptr;
		st._size = 0;
		st._capacity = 0;

		return *this;
	}

	//析构
	~Stack()
	{
		delete[] _array;
	}
private:
	int* _array;
	size_t _size;
	size_t _capacity;
};

int main()
{
	Stack s1;

	Stack s2;

	s2 = std::move(s1);
}

在C++中,前置++和后置++运算符可以通过成员函数或非成员函数的形式进行重载。两者的主要区别在于参数列表和返回值:

  • 前置++:增加对象的值,并返回增加后的对象引用。
  • 后置++:首先保存当前对象的状态,然后增加对象的值,最后返回之前保存的对象的副本。

取地址及const取地址操作符重载

在C++中,取地址操作符(&)和常量取地址操作符(const &)通常不需要显式地重载,因为编译器提供了默认的实现,它们分别返回对象或常量对象的内存地址。然而,在某些特定情况下,你可能想要自定义这些操作符的行为。

取地址操作符重载

当你重载取地址操作符时,你通常是为了改变其默认行为,例如返回一个代理对象的地址而不是原始对象的地址。不过这种情况非常少见,大多数时候并不需要这样做。

常量取地址操作符重载

类似地,重载常量版本的取地址操作符也是为了提供特定的行为,但同样,这并不是常见的需求。

示例代码

尽管不常见,这里还是给出如何重载这两种操作符的基本示例:

cpp 复制代码
#include <iostream>

class MyClass {
private:
    int value;
public:
    MyClass(int val) : value(val) {}

    // 重载取地址操作符
    int* operator&() {
        std::cout << "非const取地址操作符被调用" << std::endl;
        return &value;
    }

    // 重载const取地址操作符
    const int* operator&() const {
        std::cout << "const取地址操作符被调用" << std::endl;
        return &value;
    }
};

int main() {
    MyClass obj(10);
    const MyClass constObj(20);

    int* addr = &obj;       // 调用非const版本
    const int* constAddr = &constObj; // 调用const版本

    std::cout << "*addr: " << *addr << std::endl;
    std::cout << "*constAddr: " << *constAddr << std::endl;

    return 0;
}

输出结果

非const取地址操作符被调用
const取地址操作符被调用
*addr: 10
*constAddr: 20

在这个例子中,我们为MyClass类重载了取地址操作符和常量取地址操作符。当通过非常量对象调用operator&()时,会调用非常量版本的操作符,并打印一条消息。而当通过常量对象调用operator&()时,则调用常量版本的操作符,并打印另一条不同的消息。

注意事项

  • 谨慎使用:一般情况下,不需要也不建议重载这两个操作符,除非有特别的需求。这是因为它们改变了标准语义,可能会导致混淆或者不可预期的行为。
  • 保持一致性:如果你决定重载这些操作符,请确保它们的行为符合逻辑且一致,避免引入错误。
  • 理解限制 :需要注意的是,即使你重载了取地址操作符,也无法阻止使用内置的取地址操作来获取对象的实际地址。例如,&obj总是可以获得obj的实际地址,除非你完全隐藏了对象的访问方式。

总的来说,重载取地址操作符和常量取地址操作符是一种高级技巧,适用于特定场景下的特殊需求。在大多数日常编程任务中,这种重载是不必要的。

扩展:前置++和后置++重载

重载规则

  • 前置++只需要一个参数(即调用该运算符的对象本身),并且通常返回一个指向修改后的对象的引用。
  • 后置++需要两个参数:第一个是调用该运算符的对象本身,第二个是一个int类型的占位参数,用于区分前置和后置形式。后置++返回的是操作前对象的一个副本(通常是通过值返回)。
cpp 复制代码
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;

class Count
{
public:
	//重载后置++
	Count operator++()
	{
		++_count;
		return *this;
	}

	//后置++
	Count operator++(int)
	{
		Count temp = *this;
		++_count;
		return temp;
	}

	int getCount() const {
		return _count;
	}
private:
	int _count = 0;
};

int main()
{
	Count myCounter;

	std::cout << "Initial count: " << myCounter.getCount() << std::endl;

	++myCounter; // 调用前置++
	std::cout << "After prefix increment: " << myCounter.getCount() << std::endl;

	Count d;
	d = myCounter++; // 调用后置++
	std::cout << "After postfix increment: " << d.getCount() << std::endl;

	return 0;
}
相关推荐
_周游5 分钟前
【数据结构】_栈的结构与实现
开发语言·数据结构·c++
和风化雨32 分钟前
排序算法--计数排序
c语言·数据结构·c++·算法·排序算法
我命由我123451 小时前
游戏引擎 Unity - Unity 打开项目、Unity Editor 添加简体中文语言包模块、Unity 项目设置为简体中文
c语言·开发语言·c++·unity·ue5·c#·游戏引擎
辰尘_星启1 小时前
vscode+CMake+Debug实现 及权限不足等诸多问题汇总
c++·ide·vscode·编辑器
m0_748238422 小时前
C++ 学习:深入理解 Linux 系统中的冯诺依曼架构
linux·c++·学习
Lenyiin3 小时前
2848、与车相交的点
c++·算法·leetcode·1024程序员节
mljy.3 小时前
优选算法《前缀和》
c++·算法
Pafey3 小时前
实现一个 LRU 风格的缓存类
c++·缓存
小仇学长4 小时前
嵌入式八股文面试题(一)C语言部分
c语言·c++·面试·嵌入式·八股文