十。svm运用

import numpy as np

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

创建自定义数据集

np.random.seed(42)

X, y = datasets.make_blobs(n_samples=100, centers=2, random_state=42)

可选:添加一些噪声

X = X + np.random.randn(100, 2) * 0.1

数据标准化

scaler = StandardScaler()

X = scaler.fit_transform(X)

划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

使用 SVM 进行分类

svm = SVC(kernel='linear')

svm.fit(X_train, y_train)

预测测试集

y_pred = svm.predict(X_test)

可视化结果

plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap='viridis')

plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred, cmap='viridis', alpha=0.5)

plt.title('SVM 分类结果')

plt.xlabel('特征1')

plt.ylabel('特征2')

plt.show()

相关推荐
悟乙己12 分钟前
LangExtract + 知识图谱 — Google 用于 NLP 任务的新库
人工智能·自然语言处理·知识图谱
lpfasd12313 分钟前
GEO崛起与AI信任危机:数据源安全如何守护智能时代的基石?
大数据·人工智能·安全
Allen正心正念202515 分钟前
提升大语言模型性能的关键技术清单(from 网络)
人工智能·语言模型·自然语言处理
云雾J视界18 分钟前
AI驱动半导体良率提升:基于机器学习的晶圆缺陷分类系统搭建
人工智能·python·机器学习·智能制造·数据驱动·晶圆缺陷分类
拂过世俗的风21 分钟前
Hopfield神经网络简介
人工智能·深度学习·神经网络
IT_陈寒25 分钟前
Vue 3响应式原理深度拆解:5个90%开发者不知道的Ref与Reactive底层实现差异
前端·人工智能·后端
swanwei34 分钟前
AI与电力的深度绑定:算力与能源分配的趋势分析
大数据·人工智能
長安一片月35 分钟前
深度学习的前世今生
人工智能·深度学习
逻极37 分钟前
Spec-Kit 实战指南:从零到一构建“照片拖拽相册”Web App
人工智能·ai·agent·ai编程·web app
骄傲的心别枯萎38 分钟前
RV1126 NO.40:OPENCV图形计算面积、弧长API讲解
人工智能·opencv·计算机视觉·音视频·rv1126