(即插即用模块-特征处理部分) 十九、(NeurIPS 2023) Prompt Block 提示生成 / 交互模块

文章目录

  • 1、Prompt Block
  • 2、代码实现

paper:PromptIR: Prompting for All-in-One Blind Image Restoration

Code:https://github.com/va1shn9v/PromptIR


1、Prompt Block

在解决现有图像恢复模型时,现有研究存在一些局限性: 现有的图像恢复模型通常针对特定的退化类型(如去噪、去雾、去雨)进行训练,这会缺乏泛化能力,难以适应多种退化类型和级别。此外,现有的多退化图像恢复模型通常需要知道输入图像的退化类型,才能选择合适的模型进行恢复,这在实际应用中都是不太现实的。最后,现有的多退化图像恢复模型需要为每种退化类型和级别训练单独的模型,这会导致训练负担过重,且难以在资源受限的平台(如移动设备和边缘设备)上部署。为此,这篇论文提出一种 Prompt Block,其通过引入可学习的提示参数,将退化相关的信息编码到网络中,从而引导网络进行自适应的图像恢复。

Prompt Block 可以分为两个部分:即 Prompt Generation Module(PGM)Prompt Interaction Module(PIM)。具体来说,PGM 的目标是根据输入图像的特征动态生成 prompt 参数,使其能够更好地适应不同的退化类型。而 PIM 通过将 prompt P 与输入特征沿通道维度进行拼接,然后通过 Transformer block 进行处理,实现特征与 prompt 的交互。

对于一个输入特征 X,Prompt Block 的实现过程:

Prompt Generation Module:

  1. 对输入特征进行全局平均池化 (GAP),得到特征向量 v。
  2. 使用 1x1 卷积层对特征向量进行降维,得到紧凑的特征向量。
  3. 对降维后的特征向量进行 softmax 操作,得到 prompt 权重 w。
  4. 使用 prompt 权重 w 对 prompt 组件 Pc 进行加权求和,得到输入条件 prompt P。

Prompt Interaction Module:

  1. 首先将 prompt P 与输入特征 Fl 沿通道维度进行拼接。
  2. 将拼接后的特征通过 Transformer block 进行处理。
  3. 最后将特征经两层卷积处理,输出特征即为经过 Prompt Block 调整后的特征。

Prompt Generation / Interaction Module 结构图:

2、代码实现

python 复制代码
import torch
from torch import nn, einsum
import torch.nn.functional as F


class PromptGenBlock(nn.Module):
    def __init__(self, prompt_dim, prompt_len=5, prompt_size=96, lin_dim=192):
        super(PromptGenBlock, self).__init__()
        self.prompt_param = nn.Parameter(torch.rand(1, prompt_len, prompt_dim, prompt_size, prompt_size))
        self.linear_layer = nn.Linear(lin_dim, prompt_len)
        self.conv3x3 = nn.Conv2d(prompt_dim, prompt_dim, kernel_size=3, stride=1, padding=1, bias=False)

    def forward(self, x):
        B, C, H, W = x.shape
        emb = x.mean(dim=(-2, -1))
        prompt_weights = F.softmax(self.linear_layer(emb), dim=1)
        prompt = prompt_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) * self.prompt_param.unsqueeze(0).repeat(B, 1,
                                                                                                                  1, 1,
                                                                                                                  1,
                                                                                                                  1).squeeze(
            1)
        prompt = torch.sum(prompt, dim=1)
        prompt = F.interpolate(prompt, (H, W), mode="bilinear")
        prompt = self.conv3x3(prompt)

        return prompt


if __name__ == '__main__':
    x = torch.randn(4, 3, 64, 64).cuda()
    model = PromptGenBlock(3, lin_dim=3).cuda()
    out = model(x)
    print(out.shape)
相关推荐
材料科学研究10 小时前
掌握PINN:从理论到实战的神经网络进阶!!
深度学习·神经网络·pinn
B站计算机毕业设计之家11 小时前
多模态项目:Python人脸表情系统 CNN算法 神经网络+Adaboost定位+PyQt5界面 源码+文档 深度学习实战✅
python·深度学习·神经网络·opencv·yolo·计算机视觉·情绪识别
AI人工智能+12 小时前
行驶证识别技术通过OCR和AI实现信息自动化采集与处理,涵盖图像预处理、文字识别及结构化校验,提升效率与准确性
人工智能·深度学习·ocr·行驶证识别
IT古董13 小时前
【第五章:计算机视觉-项目实战之生成式算法实战:扩散模型】3.生成式算法实战:扩散模型-(3)DDPM模型训练与推理
人工智能·算法·计算机视觉
一条星星鱼14 小时前
深度学习中的归一化:从BN到LN到底是怎么工作的?
人工智能·深度学习·算法·归一化
Rock_yzh14 小时前
AI学习日记——深度学习
人工智能·python·深度学习·神经网络·学习
扑克中的黑桃A15 小时前
Rokid YodaOS-Master 空间渲染技术深度解析:双目立体显示与光照模拟的实现逻辑
计算机视觉
路长冬16 小时前
记录一次深度学习+SSH的配置
深度学习
清风吹过16 小时前
LSTM新架构论文分享6:LSTM+Transformer融合
论文阅读·人工智能·深度学习·神经网络·lstm·transformer
千年人参10017 小时前
AI 与神经网络:从理论到现代应用
人工智能·深度学习·神经网络