机器学习大模型问题记录

基础知识

1、多标签和多分类的区别

多分类

x有且仅有一个类别,输出y为属于类别的概率,最终类别为 y i y_i yi最大的类别,特点为 y i y_i yi互斥,且包含所有情况。

输出通常使用softmax,使 y i y_i yi具有上述特点。

多标签

输出 y i y_i yi各个类别之间有重合部分,且x可能同时属于多个类别, 1 > = y i > = 0 1>=y_i>=0 1>=yi>=0,此时最后一层通常使用sigmoid函数。

2、在多分类中什么情况需要负采样,以及负采样方法

存在的问题:

  1. 类别过多,比如推荐系统中,预测类别y_i会很多,会导致上述运算量很大

基础知识网站

https://github.com/wdndev/llm_interview_note/blob/main/01.大语言模型基础/1.激活函数/1.激活函数.md

温度系数

https://zhuanlan.zhihu.com/p/666670367

temperature参数控制生成语言模型中生成文本的随机性和创造性,调整模型的softmax输出层中预测词的概率;

temperature越大,则预测词的概率的方差减大,即很多词被选择的可能性增大,利于文本多样化

举例:Prompt: "The quick brown fox"

Temperature = 0.1:

"The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog.

Temperature = 0.5:

"The quick brown fox jumped over the lazy dog. The lazy cat was not impressed. The quick brown fox ran away."

Temperature = 1.0:

"The quick brown fox jumped over the lazy dog. Suddenly, a flock of birds flew overhead, causing the fox to stop in its tracks. It looked up at the sky, wondering where they were going."

温度就是调整大模型生成随机性的一个参数,温度越高,大模型在相同输入下,多次推理的结果相差越大

https://zhuanlan.zhihu.com/p/82829880

k越大,LLM输出多样性越大

复读机问题

https://blog.csdn.net/weixin_46566149/article/details/134987196

复读机问题分析及解决方案

在DPO时遇到复读机问题,增加SFT loss或者lora,基本思想是和ref model更像。
https://www.linsight.cn/93328a2a.html

在DPO阶段,会用在上一轮post-training得到的最佳模型收集偏好数据对,这样能使得偏好数据的分布和强化学习时的policy model更一致。

除了DPO以外,Meta也尝试了一些on-policy的方案,如PPO。但是相对来说,DPO消耗更少的计算资源,并且效果也更好,特别是在instruction following的能力上,所以还是选择在post-training使用DPO。

DPO训练中,使用lr=1e-5,beta=0.1。

此外,训练中还做了一些不同于标准做法的改动:

1、Masking out formatting tokens in DPO loss

把特殊token比如header和termination token屏蔽,不用于计算训练loss。因为使用这些token计算loss会使得模型在生成时,出现如复读机或者在不合适的地方截断的情况。这可能就是因为chosen repsponse和rejected response同时包含的这些特殊token,让模型在训练时要同时增大和较小它们的likelihood,导致冲突。

2、Regularization with NLL loss

除了DPO的常规loss,Meta额外加入了NLL损失项,这和《Iterative reasoning preference optimization》的做法类似。这也有点像PPO里加入next token prediction loss,能使训练更加稳定,并能保持SFT学到的生成格式,并保持chosen response的log probability不下降(《Smaug: Fixing failure modes of preference optimisation with dpo-positive》)。

相关推荐
爱分享的飘哥11 小时前
第八十三章:实战篇:文 → 图:Prompt 控制图像生成系统构建——从“咒语”到“神作”的炼成!
人工智能·计算机视觉·prompt·文生图·stablediffusion·diffusers·text-to-image
audyxiao00112 小时前
为了更强大的空间智能,如何将2D图像转换成完整、具有真实尺度和外观的3D场景?
人工智能·计算机视觉·3d·iccv·空间智能
范男14 小时前
基于Pytochvideo训练自己的的视频分类模型
人工智能·pytorch·python·深度学习·计算机视觉·3d·视频
点云SLAM18 小时前
SLAM文献之-Globally Consistent and Tightly Coupled 3D LiDAR Inertial Mapping
3d·机器人·slam·vgicp算法·gpu 加速·lidar-imu 建图方法·全局匹配代价最小化
顾道长生'20 小时前
(Arxiv-2025)SkyReels-A2:在视频扩散变换器中组合任意内容
人工智能·计算机视觉·音视频·多模态
CoovallyAIHub21 小时前
标注成本骤降,DINOv3炸裂发布!冻结 backbone 即拿即用,性能对标SOTA
深度学习·算法·计算机视觉
飞翔的佩奇1 天前
【完整源码+数据集+部署教程】表盘指针检测系统源码和数据集:改进yolo11-CA-HSFPN
python·yolo·计算机视觉·数据集·yolo11·表盘指针检测
Coovally AI模型快速验证1 天前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
飞翔的佩奇1 天前
【完整源码+数据集+部署教程】二维码与查找模式检测系统源码和数据集:改进yolo11-CSwinTransformer
python·yolo·计算机视觉·数据集·yolo11·二维码与查找模式检测
qq_526099131 天前
图像采集卡与工业相机:机器视觉“双剑合璧”的效能解析
图像处理·数码相机·计算机视觉