【DeepSeek-R1训练笔记】随手记录一些训练log

背景说明

基本设置

  • 训练算法:DeepSeek-R1-Zero纯RL训练(无long CoT、SFT和蒸馏过程)

  • Base model:Qwen/Qwen2.5-7B-Instruct-1M(huggingface传送门

  • 训练脚本执行:

    bash 复制代码
    bash main_grpo.sh

RL训练过程

第一阶段:正确的格式学习(3PPL数据集)

  • 训练400个step

  • wandb file:run-20250207_161945-1oftdu9q

  • main_grpo.sh脚本配置如下:

    bash 复制代码
    set -x
    MODEL_PATH='Qwen2.5-7B-Instruct-1M'
    export VLLM_ATTENTION_BACKEND=XFORMERS
    python3 -m verl.trainer.main_ppo \
        algorithm.adv_estimator=grpo \
        data.train_files=data/kk/instruct/3ppl/train.parquet \
        data.val_files=data/kk/instruct/3ppl/test.parquet \
        data.train_batch_size=2 \
        data.val_batch_size=4 \
        data.max_prompt_length=400 \
        data.max_response_length=2048 \
        actor_rollout_ref.model.path=$MODEL_PATH \
        actor_rollout_ref.actor.optim.lr=3e-7 \
        actor_rollout_ref.model.use_remove_padding=True \
        actor_rollout_ref.actor.ppo_mini_batch_size=256 \
        actor_rollout_ref.actor.ppo_micro_batch_size=64 \
        actor_rollout_ref.actor.use_kl_loss=True \
        actor_rollout_ref.actor.kl_loss_coef=0.001 \
        actor_rollout_ref.actor.kl_loss_type=low_var_kl \
        actor_rollout_ref.model.enable_gradient_checkpointing=True \
        actor_rollout_ref.actor.fsdp_config.param_offload=True \
        actor_rollout_ref.actor.fsdp_config.grad_offload=True \
        actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \
        actor_rollout_ref.rollout.log_prob_micro_batch_size=160 \
        actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
        actor_rollout_ref.rollout.name=vllm \
        actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \
        actor_rollout_ref.rollout.n=16 \
        actor_rollout_ref.ref.log_prob_micro_batch_size=160 \
        actor_rollout_ref.ref.fsdp_config.param_offload=True \
        algorithm.kl_ctrl.kl_coef=0.001 \
        trainer.critic_warmup=0 \
        trainer.logger=['wandb'] \
        trainer.project_name='GRPO_logic_KK' \
        trainer.experiment_name='Qwen-7B' \
        trainer.n_gpus_per_node=2 \
        trainer.nnodes=1 \
        trainer.default_local_dir=local_dir \
        trainer.default_hdfs_dir=null \
        trainer.save_freq=10 \
        trainer.test_freq=10 \
        trainer.total_epochs=1 $@ 2>&1 | tee grpo.log

验证集:效果逐渐变好

平均reward、答案错误的比例、全对的比例、格式错误比例:前三者趋势正确,但是变化不大,格式错误大幅降低!因为这一步主要是在简单的3PPL数据上学格式,大约10个step可以将格式错误降到0.1以下

平均生成长度:有少量增长,但并不明显,应该是还在第一阶段的问题

再看一下生成答案过程中的一些特点:


再看一下出现的格式错误具体原因:

还出现了不同程度的语言混杂问题:

相关推荐
OpenBayes2 天前
OCR 新范式!DeepSeek 以「视觉压缩」替代传统字符识别;Bald Classification数据集助力高精度人像分类
人工智能·深度学习·分类·数据挖掘·ocr·数据集·deepseek
安如衫2 天前
【学习笔记更新中】Deeplearning.AI 大语言模型后训练:微调与强化学习导论
人工智能·llm·sft·后训练·deepseek
realhuizhu2 天前
周报写了2小时还被挑刺?试试这个AI生成框架
ai提示词·deepseek·工作周报·职场效率·周报生成器
l1t2 天前
利用DeepSeek采用hugeint转字符串函数完善luadbi-duckdb的decimal处理
数据库·lua·c·duckdb·deepseek
Mr.Lee jack2 天前
【CUDA 编程思想】FwdKvcacheMla 算子详细数据流程讲解
deepseek
武子康2 天前
AI研究-121 DeepSeek-OCR 研究路线:无限上下文、跨模态抽取、未来创意点、项目创意点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
嗷嗷哦润橘_3 天前
集群网络技术1:RDMA和相关协议
网络·阿里云·deepseek
武子康3 天前
AI研究-120 DeepSeek-OCR 从 0 到 1:上手路线、实战要点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
血小溅4 天前
Spring Boot 整合 Spring AI:接入 DeepSeek 与 Ollama 调用大模型
后端·ollama·deepseek
视觉&物联智能4 天前
【杂谈】-制造业变革:机器人与自动化引领新时代
人工智能·ai·机器人·自动化·aigc·agi·deepseek