【DeepSeek-R1训练笔记】随手记录一些训练log

背景说明

基本设置

  • 训练算法:DeepSeek-R1-Zero纯RL训练(无long CoT、SFT和蒸馏过程)

  • Base model:Qwen/Qwen2.5-7B-Instruct-1M(huggingface传送门

  • 训练脚本执行:

    bash 复制代码
    bash main_grpo.sh

RL训练过程

第一阶段:正确的格式学习(3PPL数据集)

  • 训练400个step

  • wandb file:run-20250207_161945-1oftdu9q

  • main_grpo.sh脚本配置如下:

    bash 复制代码
    set -x
    MODEL_PATH='Qwen2.5-7B-Instruct-1M'
    export VLLM_ATTENTION_BACKEND=XFORMERS
    python3 -m verl.trainer.main_ppo \
        algorithm.adv_estimator=grpo \
        data.train_files=data/kk/instruct/3ppl/train.parquet \
        data.val_files=data/kk/instruct/3ppl/test.parquet \
        data.train_batch_size=2 \
        data.val_batch_size=4 \
        data.max_prompt_length=400 \
        data.max_response_length=2048 \
        actor_rollout_ref.model.path=$MODEL_PATH \
        actor_rollout_ref.actor.optim.lr=3e-7 \
        actor_rollout_ref.model.use_remove_padding=True \
        actor_rollout_ref.actor.ppo_mini_batch_size=256 \
        actor_rollout_ref.actor.ppo_micro_batch_size=64 \
        actor_rollout_ref.actor.use_kl_loss=True \
        actor_rollout_ref.actor.kl_loss_coef=0.001 \
        actor_rollout_ref.actor.kl_loss_type=low_var_kl \
        actor_rollout_ref.model.enable_gradient_checkpointing=True \
        actor_rollout_ref.actor.fsdp_config.param_offload=True \
        actor_rollout_ref.actor.fsdp_config.grad_offload=True \
        actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \
        actor_rollout_ref.rollout.log_prob_micro_batch_size=160 \
        actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
        actor_rollout_ref.rollout.name=vllm \
        actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \
        actor_rollout_ref.rollout.n=16 \
        actor_rollout_ref.ref.log_prob_micro_batch_size=160 \
        actor_rollout_ref.ref.fsdp_config.param_offload=True \
        algorithm.kl_ctrl.kl_coef=0.001 \
        trainer.critic_warmup=0 \
        trainer.logger=['wandb'] \
        trainer.project_name='GRPO_logic_KK' \
        trainer.experiment_name='Qwen-7B' \
        trainer.n_gpus_per_node=2 \
        trainer.nnodes=1 \
        trainer.default_local_dir=local_dir \
        trainer.default_hdfs_dir=null \
        trainer.save_freq=10 \
        trainer.test_freq=10 \
        trainer.total_epochs=1 $@ 2>&1 | tee grpo.log

验证集:效果逐渐变好

平均reward、答案错误的比例、全对的比例、格式错误比例:前三者趋势正确,但是变化不大,格式错误大幅降低!因为这一步主要是在简单的3PPL数据上学格式,大约10个step可以将格式错误降到0.1以下

平均生成长度:有少量增长,但并不明显,应该是还在第一阶段的问题

再看一下生成答案过程中的一些特点:


再看一下出现的格式错误具体原因:

还出现了不同程度的语言混杂问题:

相关推荐
天翼云开发者社区1 小时前
国产AI生态新突破!“息壤”+DeepSeek王炸组合来了!
人工智能·大模型·ai芯片·智算中心·deepseek
AliCloudROS5 小时前
在阿里云ECS上一键部署DeepSeek-R1
ai·云服务器·deepseek
Chukai1236 小时前
DeepSeek-R1:通过强化学习提升大型语言模型推理能力的探索
deepseek
佛州小李哥7 小时前
在亚马逊云科技上云原生部署DeepSeek-R1模型(上)
人工智能·ai·语言模型·云计算·aws·亚马逊云科技·deepseek
季春二九7 小时前
autMan奥特曼机器人-对接deepseek教程
机器人·deepseek·autman·奥特曼机器人
Sindweller55307 小时前
Deepseek-v3 / Dify api接入飞书机器人go程序
golang·飞书·dify·deepseek
您好啊数模君7 小时前
2025.2.6 数模AI智能体大更新,更专业的比赛辅导,同提示词效果优于gpt-o1/o3mini、deepseek-r1满血
数学建模·ai·智能体·豆包·gpt-o1·deepseek
余生大大7 小时前
全流程安装DeepSeek开源模型
ai·deepseek
玩AI的小胡子16 小时前
DeePseek结合PS!批量处理图片的方法教程
人工智能·aigc·deepseek·玩ai的小胡子