【机器学习】数学知识:拉格朗日对偶(Lagrange Duality)

拉格朗日对偶(Lagrange Duality)

1. 概念

拉格朗日对偶(Lagrange Duality)是优化理论中的一个重要方法,用于将约束优化问题转换为更易求解的对偶问题。它在凸优化、经济学、机器学习(如 SVM)等领域有广泛应用。

2. 原始问题(Primal Problem)

考虑一个标准的约束优化问题:



其中:

  • f(x) 是目标函数
  • 是不等式约束
  • 是等式约束
3. 拉格朗日函数

定义 拉格朗日函数(Lagrangian):

其中:

  • 拉格朗日乘子 (对应不等式约束)
  • 拉格朗日乘子 (对应等式约束)
4. 对偶函数

对偶函数定义为:

即,对于给定的拉格朗日乘子 (λ,μ),计算 L(x,λ,μ) 在 x 上的最小值。

5. 对偶问题(Dual Problem)

即,找出最优的 (λ,μ) 使得 θ(λ,μ) 取得最大值。

6. 弱对偶性和强对偶性
  • 弱对偶性 :对偶问题的最优值永远不大于原始问题的最优值:

  • 强对偶性(Slater 条件):如果原始问题是凸优化问题,并且满足 Slater 条件(即存在严格可行解),则对偶问题的最优值等于原始问题的最优值。

7. 计算示例

考虑优化问题:


拉格朗日函数:

对偶函数:

求导:

解得:

代入



对偶问题:

通过求导可以得到最优解。

8. 应用
  • 支持向量机(SVM):通过拉格朗日对偶求解优化问题。
  • 约束优化:在凸优化中,利用对偶问题简化计算。
  • 经济学:用于影子价格分析和资源分配。

拉格朗日对偶是一种强大的数学工具,帮助优化问题转换成更容易求解的形式。

相关推荐
小鸡吃米…1 天前
机器学习中的回归分析
人工智能·python·机器学习·回归
地平线开发者1 天前
征程 6 | cgroup sample
算法·自动驾驶
姓蔡小朋友1 天前
算法-滑动窗口
算法
君义_noip1 天前
信息学奥赛一本通 2134:【25CSPS提高组】道路修复 | 洛谷 P14362 [CSP-S 2025] 道路修复
c++·算法·图论·信息学奥赛·csp-s
kaikaile19951 天前
基于拥挤距离的多目标粒子群优化算法(MO-PSO-CD)详解
数据结构·算法
不忘不弃1 天前
求两组数的平均值
数据结构·算法
leaves falling1 天前
迭代实现 斐波那契数列
数据结构·算法
珂朵莉MM1 天前
全球校园人工智能算法精英大赛-产业命题赛-算法巅峰赛 2025年度画像
java·人工智能·算法·机器人
Morwit1 天前
*【力扣hot100】 647. 回文子串
c++·算法·leetcode