【机器学习】数学知识:拉格朗日对偶(Lagrange Duality)

拉格朗日对偶(Lagrange Duality)

1. 概念

拉格朗日对偶(Lagrange Duality)是优化理论中的一个重要方法,用于将约束优化问题转换为更易求解的对偶问题。它在凸优化、经济学、机器学习(如 SVM)等领域有广泛应用。

2. 原始问题(Primal Problem)

考虑一个标准的约束优化问题:



其中:

  • f(x) 是目标函数
  • 是不等式约束
  • 是等式约束
3. 拉格朗日函数

定义 拉格朗日函数(Lagrangian):

其中:

  • 拉格朗日乘子 (对应不等式约束)
  • 拉格朗日乘子 (对应等式约束)
4. 对偶函数

对偶函数定义为:

即,对于给定的拉格朗日乘子 (λ,μ),计算 L(x,λ,μ) 在 x 上的最小值。

5. 对偶问题(Dual Problem)

即,找出最优的 (λ,μ) 使得 θ(λ,μ) 取得最大值。

6. 弱对偶性和强对偶性
  • 弱对偶性 :对偶问题的最优值永远不大于原始问题的最优值:

  • 强对偶性(Slater 条件):如果原始问题是凸优化问题,并且满足 Slater 条件(即存在严格可行解),则对偶问题的最优值等于原始问题的最优值。

7. 计算示例

考虑优化问题:


拉格朗日函数:

对偶函数:

求导:

解得:

代入



对偶问题:

通过求导可以得到最优解。

8. 应用
  • 支持向量机(SVM):通过拉格朗日对偶求解优化问题。
  • 约束优化:在凸优化中,利用对偶问题简化计算。
  • 经济学:用于影子价格分析和资源分配。

拉格朗日对偶是一种强大的数学工具,帮助优化问题转换成更容易求解的形式。

相关推荐
fie88892 小时前
NSCT(非下采样轮廓波变换)的分解和重建程序
算法
晨晖23 小时前
单链表逆转,c语言
c语言·数据结构·算法
im_AMBER4 小时前
Leetcode 78 识别数组中的最大异常值 | 镜像对之间最小绝对距离
笔记·学习·算法·leetcode
鼾声鼾语5 小时前
matlab的ros2发布的消息,局域网内其他设备收不到情况吗?但是matlab可以订阅其他局域网的ros2发布的消息(问题总结)
开发语言·人工智能·深度学习·算法·matlab·isaaclab
LYFlied5 小时前
【每日算法】LeetCode 25. K 个一组翻转链表
算法·leetcode·链表
Swizard5 小时前
别再迷信“准确率”了!一文读懂 AI 图像分割的黄金标尺 —— Dice 系数
python·算法·训练
s09071365 小时前
紧凑型3D成像声纳实现路径
算法·3d·声呐·前视多波束
可爱的小小小狼5 小时前
算法:二叉树遍历
算法
d111111111d6 小时前
在STM32函数指针是什么,怎么使用还有典型应用场景。
笔记·stm32·单片机·嵌入式硬件·学习·算法
AI科技星7 小时前
质量定义方程常数k = 4π m_p的来源、推导与意义
服务器·数据结构·人工智能·科技·算法·机器学习·生活