【机器学习】数学知识:拉格朗日对偶(Lagrange Duality)

拉格朗日对偶(Lagrange Duality)

1. 概念

拉格朗日对偶(Lagrange Duality)是优化理论中的一个重要方法,用于将约束优化问题转换为更易求解的对偶问题。它在凸优化、经济学、机器学习(如 SVM)等领域有广泛应用。

2. 原始问题(Primal Problem)

考虑一个标准的约束优化问题:



其中:

  • f(x) 是目标函数
  • 是不等式约束
  • 是等式约束
3. 拉格朗日函数

定义 拉格朗日函数(Lagrangian):

其中:

  • 拉格朗日乘子 (对应不等式约束)
  • 拉格朗日乘子 (对应等式约束)
4. 对偶函数

对偶函数定义为:

即,对于给定的拉格朗日乘子 (λ,μ),计算 L(x,λ,μ) 在 x 上的最小值。

5. 对偶问题(Dual Problem)

即,找出最优的 (λ,μ) 使得 θ(λ,μ) 取得最大值。

6. 弱对偶性和强对偶性
  • 弱对偶性 :对偶问题的最优值永远不大于原始问题的最优值:

  • 强对偶性(Slater 条件):如果原始问题是凸优化问题,并且满足 Slater 条件(即存在严格可行解),则对偶问题的最优值等于原始问题的最优值。

7. 计算示例

考虑优化问题:


拉格朗日函数:

对偶函数:

求导:

解得:

代入



对偶问题:

通过求导可以得到最优解。

8. 应用
  • 支持向量机(SVM):通过拉格朗日对偶求解优化问题。
  • 约束优化:在凸优化中,利用对偶问题简化计算。
  • 经济学:用于影子价格分析和资源分配。

拉格朗日对偶是一种强大的数学工具,帮助优化问题转换成更容易求解的形式。

相关推荐
小龙报12 分钟前
《算法通关指南---C++编程篇(2)》
c语言·开发语言·数据结构·c++·程序人生·算法·学习方法
金宗汉22 分钟前
《宇宙递归拓扑学:基于自指性与拓扑流形的无限逼近模型》
大数据·人工智能·笔记·算法·观察者模式
YY_TJJ2 小时前
算法题——贪心算法
算法·贪心算法
C++ 老炮儿的技术栈2 小时前
include″″与includ<>的区别
c语言·开发语言·c++·算法·visual studio
CLubiy2 小时前
【研究生随笔】Pytorch中的线性代数
pytorch·python·深度学习·线性代数·机器学习
RainbowC03 小时前
GapBuffer高效标记管理算法
android·算法
liu****3 小时前
10.queue的模拟实现
开发语言·数据结构·c++·算法
mit6.8243 小时前
10.17 枚举中间|图论
算法
让我们一起加油好吗3 小时前
【基础算法】01BFS
数据结构·c++·算法·bfs·01bfs
孤狼灬笑3 小时前
机器学习十大经典算法解析与对比
人工智能·算法·机器学习