【kafka系列】架构、核心概念

Kafka 是一个分布式流处理平台,设计目标是高吞吐量、低延迟、可水平扩展,主要用于处理实时数据流。以下是 Kafka 的核心架构和关键概念,帮助你快速理解和使用它。


一、Kafka 核心架构

Kafka 的架构由多个组件协作完成,整体架构如下:

复制代码
生产者(Producer)  -->  Kafka集群(Brokers) --> 消费者(Consumer)
          |                             |
          |-- ZooKeeper/KRaft(元数据管理)--|
1. 核心组件
  1. Producer(生产者)
    • 将数据发布到 Kafka 的 Topic 中。
    • 支持异步/同步发送、消息批量压缩、重试机制。
  1. Broker(服务节点)
    • Kafka 集群中的单个服务器,负责存储和处理数据。
    • 每个 Broker 可以管理多个 Topic 的分区。
  1. Consumer(消费者)
    • 从 Topic 中拉取(Pull)数据并进行处理。
    • 消费者以组(Consumer Group)形式工作,组内消费者共同消费一个 Topic。
  1. ZooKeeper/KRaft(元数据管理)
    • 旧版本:依赖 ZooKeeper 管理集群元数据(如 Broker 注册、Topic 配置、Controller 选举)。
    • 新版本(Kafka 3.4+):逐步迁移到 KRaft 模式(基于 Raft 协议的内置元数据管理),不再依赖 ZooKeeper。
  1. Topic(主题)
    • 数据的逻辑分类,生产者向 Topic 写入数据,消费者从 Topic 读取数据。
  1. Partition(分区)
    • Topic 的物理分片,每个 Partition 是一个有序、不可变的消息序列。
    • 分区的作用:提高并行度和吞吐量(不同分区可分布到不同 Broker)。
  1. Replica(副本)
    • 每个 Partition 有多个副本(Replica),分为 Leader 和 Follower。
    • Leader:处理所有读写请求。
    • Follower:从 Leader 同步数据,实现高可用。

二、Kafka 核心概念

1. 消息存储模型
  • 消息(Record)
    • 由 Key、Value、Timestamp、Headers 组成。
    • 生产者发送的消息会被追加到 Partition 的末尾。
  • Offset(偏移量)
    • 每条消息在 Partition 中的唯一标识(类似数组下标)。
    • 消费者通过 Offset 记录消费进度。
  • Log Segment(日志段)
    • Partition 的物理存储由多个 Segment 文件组成(默认 1GB 一个文件)。
    • 每个 Segment 包含 .log(数据文件)和 .index(索引文件)。
2. 高可用机制
  • ISR(In-Sync Replicas)
    • 与 Leader 保持同步的副本集合。
    • 只有 ISR 中的副本才有资格被选举为 Leader。
  • Controller(控制器)
    • 集群中的一个特殊 Broker,负责 Partition 的 Leader 选举和副本分配。
    • 通过监听 ZooKeeper/KRaft 的元数据变化触发状态机更新。
3. 消费者组(Consumer Group)
  • 组内负载均衡
    • 一个 Consumer Group 中的多个消费者共同消费一个 Topic。
    • 每个 Partition 只能被组内的一个消费者消费。
  • 再平衡(Rebalance)
    • 当消费者加入或离开组时,Partition 会重新分配。
4. 消息传递语义
  • At Most Once:消息可能丢失,但不会重复。
  • At Least Once:消息不会丢失,但可能重复。
  • Exactly Once:消息不丢失且不重复(通过事务和幂等性实现)。

三、Kafka 工作流程

1. 生产者发送消息
  1. 生产者将消息发送到指定的 Topic。
  2. 根据 Partitioner 策略(如 Hash(Key))选择目标 Partition。
  3. 消息先写入内存缓冲区(RecordAccumulator),达到阈值后批量发送。
2. Broker 存储消息
  1. Broker 接收消息后,将其追加到对应 Partition 的 Log Segment。
  2. 数据按顺序写入磁盘(顺序 I/O 性能高)。
  3. 根据配置的副本数(replication.factor)同步到 Follower。
3. 消费者消费消息
  1. 消费者订阅 Topic,向 Broker 发起 Fetch 请求。
  2. 消费者按 Offset 顺序拉取消息,处理完成后提交 Offset。
  3. Offset 提交到 Kafka 内部 Topic __consumer_offsets

四、Kafka 使用场景

  1. 实时数据管道:将数据从源系统(如数据库、日志)传输到数据仓库或流处理系统。
  2. 日志聚合:集中收集分布式系统的日志数据。
  3. 事件驱动架构:处理用户行为事件(如点击、支付)。
  4. 流处理:结合 Kafka Streams 或 Flink 进行实时计算。

五、快速上手 Kafka

1. 安装与启动
复制代码
# 下载 Kafka(以 3.6.1 版本为例)
wget https://downloads.apache.org/kafka/3.6.1/kafka_2.13-3.6.1.tgz
tar -xzf kafka_2.13-3.6.1.tgz
cd kafka_2.13-3.6.1

# 启动 ZooKeeper(旧版本)或 KRaft 模式(新版本)
# KRaft 模式启动(不需要 ZooKeeper):
bin/kafka-storage.sh format -t $CLUSTER_ID -c config/kraft/server.properties
bin/kafka-server-start.sh config/kraft/server.properties
2. 基础操作
复制代码
# 创建 Topic
bin/kafka-topics.sh --create --topic test-topic --bootstrap-server localhost:9092 --partitions 3 --replication-factor 1

# 启动生产者(控制台)
bin/kafka-console-producer.sh --topic test-topic --bootstrap-server localhost:9092

# 启动消费者(控制台)
bin/kafka-console-consumer.sh --topic test-topic --bootstrap-server localhost:9092 --from-beginning
3. Java 客户端示例
复制代码
// 生产者
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

Producer<String, String> producer = new KafkaProducer<>(props);
producer.send(new ProducerRecord<>("test-topic", "key", "value"));
producer.close();

// 消费者
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test-group");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

Consumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Collections.singletonList("test-topic"));
while (true) {
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
    for (ConsumerRecord<String, String> record : records) {
        System.out.println(record.value());
    }
}

六、最佳实践

  1. 避免消息丢失
    • 生产者配置 acks=all
    • 消费者手动提交 Offset(enable.auto.commit=false)。
  1. 提高吞吐量
    • 生产者启用批处理(linger.msbatch.size)。
    • 消费者增加 fetch.min.bytesmax.poll.records
  1. 监控与运维
    • 使用 Kafka Manager、Prometheus + Grafana 监控集群状态。
    • 定期清理过期数据(log.retention.hours)。

总结

Kafka 的核心优势在于其分布式设计高吞吐量,理解以下关键点即可上手:

  1. Topic-Partition 模型:数据分片与并行处理。
  2. 副本机制:通过 ISR 保证高可用。
  3. 消费者组:负载均衡与水平扩展。
  4. 持久化存储:顺序 I/O 和零拷贝技术。

通过动手部署集群、编写生产/消费代码,结合官方文档逐步深入,你可以在实际项目中熟练使用 Kafka!

相关推荐
Edingbrugh.南空9 小时前
Kafka 3.0零拷贝技术全链路源码深度剖析:从发送端到日志存储的极致优化
分布式·kafka
楼台的春风11 小时前
【Linux驱动开发 ---- 2.1_深入理解 Linux 内核架构】
linux·c++·人工智能·驱动开发·嵌入式硬件·ubuntu·架构
掘金-我是哪吒12 小时前
分布式微服务系统架构第150集:JavaPlus技术文档平台日更
分布式·微服务·云原生·架构·系统架构
Edingbrugh.南空12 小时前
Kafka分区机制深度解析:架构原理、负载均衡与性能优化
架构·kafka·负载均衡
技术管理修行13 小时前
【二】主流架构模式深度对比:单体、前后端分离与微服务
微服务·云原生·架构·服务发现·前后端分离·单体架构
喝拿铁写前端13 小时前
前端批量校验还能这么写?函数式校验器组合太香了!
前端·javascript·架构
辛普森Mmmm14 小时前
分布式+RPC
分布式
miaoikxm14 小时前
本地windows搭建kafka
windows·分布式·kafka
安科瑞王可14 小时前
“430”与“531”政策节点后分布式光伏并网技术挑战及智慧调度策略
分布式·虚拟电厂·光伏·智慧能源·自发自用
Edingbrugh.南空14 小时前
Kafka数据写入流程源码深度剖析(Broker篇)
分布式·kafka