简化的动态稀疏视觉Transformer的PyTorch代码

存一串代码(简化的动态稀疏视觉Transformer的PyTorch代码)

import torch 
import torch.nn  as nn 
import torch.nn.functional  as F 
 
class DynamicSparseAttention(nn.Module): 
    def __init__(self, dim, num_heads=8, dropout=0.1): 
        super().__init__() 
        self.num_heads  = num_heads 
        self.head_dim  = dim // num_heads 
        self.scale  = self.head_dim  ** -0.5 
 
        self.qkv  = nn.Linear(dim, dim * 3, bias=False) 
        self.attn_drop  = nn.Dropout(dropout) 
        self.proj  = nn.Linear(dim, dim) 
        self.proj_drop  = nn.Dropout(dropout) 
 
    def forward(self, x): 
        B, N, C = x.shape  
        qkv = self.qkv(x).reshape(B,  N, 3, self.num_heads,  self.head_dim).permute(2,  0, 3, 1, 4) 
        q, k, v = qkv.unbind(0)  
 
        attn = (q @ k.transpose(-2,  -1)) * self.scale  
        attn = attn.softmax(dim=-1)  
        attn = self.attn_drop(attn)  
 
        x = (attn @ v).transpose(1, 2).reshape(B, N, C) 
        x = self.proj(x)  
        x = self.proj_drop(x)  
        return x 
 
class HierarchicalRoutingBlock(nn.Module): 
    def __init__(self, dim, num_heads=8, mlp_ratio=4., dropout=0.1): 
        super().__init__() 
        self.norm1  = nn.LayerNorm(dim) 
        self.attn  = DynamicSparseAttention(dim, num_heads, dropout) 
        self.norm2  = nn.LayerNorm(dim) 
        self.mlp  = nn.Sequential( 
            nn.Linear(dim, int(dim * mlp_ratio)), 
            nn.GELU(), 
            nn.Dropout(dropout), 
            nn.Linear(int(dim * mlp_ratio), dim), 
            nn.Dropout(dropout) 
        ) 
 
    def forward(self, x): 
        x = x + self.attn(self.norm1(x))  
        x = x + self.mlp(self.norm2(x))  
        return x 
 
class DynamicSparseVisionTransformer(nn.Module): 
    def __init__(self, img_size=224, patch_size=16, num_classes=1000, dim=768, num_heads=8, depth=12, mlp_ratio=4., dropout=0.1): 
        super().__init__() 
        self.patch_embed  = nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size) 
        self.pos_embed  = nn.Parameter(torch.zeros(1,  (img_size // patch_size) ** 2, dim)) 
        self.dropout  = nn.Dropout(dropout) 
 
        self.blocks  = nn.ModuleList([HierarchicalRoutingBlock(dim, num_heads, mlp_ratio, dropout) for _ in range(depth)]) 
        self.norm  = nn.LayerNorm(dim) 
 
        self.head  = nn.Linear(dim, num_classes) if num_classes > 0 else nn.Identity() 
 
    def forward(self, x): 
        x = self.patch_embed(x).flatten(2).transpose(1,  2) 
        x = x + self.pos_embed  
        x = self.dropout(x)  
 
        for blk in self.blocks:  
            x = blk(x) 
 
        x = self.norm(x)  
        x = x[:, 0] 
        x = self.head(x)  
        return x 
 
# 使用 
model = DynamicSparseVisionTransformer() 
x = torch.randn(1,  3, 224, 224) 
output = model(x) 
print(output.shape)  

代码解释

DynamicSparseAttention:实现动态稀疏注意力模块。

HierarchicalRoutingBlock:实现层次化路由块,包含注意力模块和多层感知机。

DynamicSparseVisionTransformer:实现完整的动态稀疏视觉Transformer模型,包括补丁嵌入、位置嵌入、层次化路由块和分类头。

相关推荐
charles_vaez43 分钟前
开源模型应用落地-qwen模型小试-Qwen1.5-MoE-A2.7B-Chat-快速体验
深度学习·语言模型·自然语言处理
这就是编程1 小时前
ChatGPT背后的深度解析:Andrej Karpathy的视频精华
人工智能·chatgpt
是小果果蛋儿啊1 小时前
2024 CyberHost 语音+图像-视频
人工智能·深度学习·音视频
TangGeeA1 小时前
对gru的理解
rnn·深度学习·gru
中科岩创2 小时前
河北某石油管廊自动化监测
大数据·人工智能
Boxsc_midnight2 小时前
【用Deepseek搭建免费的个人知识库--综合教程(完整版)】第二篇:Ollama服务器
运维·服务器·人工智能·nginx
大囚长2 小时前
自己动手实现一个简单的Linux AI Agent
人工智能
神州问学2 小时前
智能背后的阴影:LLM安全风险
人工智能·安全
高工智能汽车2 小时前
洗牌加速!车规MCU“冷热交加”
人工智能·单片机·物联网
云边有个稻草人3 小时前
AI语言模型的技术之争:DeepSeek与ChatGPT的架构与训练揭秘
人工智能·算法·语言模型·chatgpt·deepseek