论文笔记:Multi-Head Mixture-of-Experts

2024 neurips

1 背景

  • 稀疏混合专家(SMoE)可在不显著增加训练和推理成本的前提下提升模型的能力【比如Mixtral 8*7B,表现可以媲美LLaMA-2 70B】
    • 但它也有两个问题
      • 专家激活率低(下图左)
        • 在优化时只有一小部分专家会被激活
        • ------>在学习应对复杂任务的大量专家时,会出现性能次优和效果不佳的问题
      • 无法细粒度地分析单个 token 的多重语义概念【多义词/具有多重细节的图块】
  • ------>提出了多头混合专家(MH-MoE)
    • 采用了多头机制,可将每个输入 token 分成多个子 token
    • 然后将这些子 token 分配给一组多样化的专家并行处理,之后再无缝地将它们整合进原来的 token 形式
  • MH-MOE的优势
    • 专家激活率更高且扩展性更好
      • MH-MoE 能优化几乎所有专家,从而可以缓解专家激活率低的问题并大幅提升更大专家的使用率
    • 具有更细粒度的理解能力
      • MH-MoE 采用的多头机制会将子 token 分配给不同的专家,从而可以联合关注来自不同专家的不同表征空间的信息,最终获得更好更细粒度的理解能力。

2 方法

  • MH-MoE 的训练目标是最小化两个损失:针对具体任务的损失和辅助性的负载平衡损失。
相关推荐
mzlogin2 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮2 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻2 小时前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉
行云流水剑2 小时前
【学习记录】深入解析 AI 交互中的五大核心概念:Prompt、Agent、MCP、Function Calling 与 Tools
人工智能·学习·交互
love530love2 小时前
【笔记】在 MSYS2(MINGW64)中正确安装 Rust
运维·开发语言·人工智能·windows·笔记·python·rust
A林玖2 小时前
【机器学习】主成分分析 (PCA)
人工智能·机器学习
Jamence2 小时前
多模态大语言模型arxiv论文略读(108)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
tongxianchao3 小时前
双空间知识蒸馏用于大语言模型
人工智能·语言模型·自然语言处理
苗老大3 小时前
MMRL: Multi-Modal Representation Learning for Vision-Language Models(多模态表示学习)
人工智能·学习·语言模型
中达瑞和-高光谱·多光谱3 小时前
中达瑞和SHIS高光谱相机在黑色水彩笔墨迹鉴定中的应用
人工智能·数码相机