llama.cpp部署 DeepSeek-R1 模型

一、llama.cpp 介绍

使用纯 C/C++推理 Meta 的LLaMA模型(及其他模型)。主要目标llama.cpp是在各种硬件(本地和云端)上以最少的设置和最先进的性能实现 LLM 推理。纯 C/C++ 实现,无任何依赖项Apple 芯片是一流的------通过 ARM NEON、Accelerate 和 Metal 框架进行了优化AVX、AVX2、AVX512 和 AMX 支持 x86 架构1.5 位、2 位、3 位、4 位、5 位、6 位和 8 位整数量化,可加快推理速度并减少内存使用用于在 NVIDIA GPU 上运行 LLM 的自定义 CUDA 内核(通过 HIP 支持 AMD GPU,通过 MUSA 支持 Moore Threads MTT GPU)Vulkan 和 SYCL 后端支持CPU+GPU 混合推理,部分加速大于 VRAM 总容量的模型。

复制代码
Github 地址:https://github.com/ggerganov/llama.cpp
下载地址:https://github.com/ggerganov/llama.cpp/releases

二、 llama.cpp安装

llama.cpp:基于C++重写了 LLaMa 的推理代码,是一种推理框架。支持动态批处理,支持混合推理。

llama.cpp:只支持 gguf 格式的模型,可以自己生成或从 huggingface 等平台下载 gguf 格式的模型;

2.1、llama.cpp:纯 CPU 运行,并且支持 avx512 指令集,

复制代码
地址:https://github.com/ggerganov/llama.cpp/releases/download/b4658/llama-b4658-bin-win-avx512-x64.zip,
#运行参数配置:https://github.com/ggerganov/llama.cpp/tree/master/examples/server
#下载完成后,解压到 D:\llama-b4658-bin-win-avx512-x64 目录

linux

复制代码
##llama.cpp
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp/
make

##下载模型并转换
conda create -n llamacpp python=3.12
conda activate llamacpp
pip install -r requirements.txt

###下载模型到 models/ 目录下
cd models
sudo apt-get install git-lfs
# or
git lfs install
git clone https://www.modelscope.cn/qwen/Qwen2-0.5B-Instruct.git
./llama-cli -m models/Qwen2-0.5B-Instruct/Qwen2-0.5B-Instruct-F
16.gguf -p hello -n 256
$推理测试

2.2、DeepSeek-R1 模型

复制代码
下载地址:https://hf-mirror.com/lmstudio-community/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/tree/main,本文以#"DeepSeek-R1-Distill-Qwen-1.5B-Q3_K_L.gguf"为例。

2.3llama.cpp 部署 DeepSeek-R1 模型

复制代码
在 DeepSeek-R1-Distill-Qwen-1.5B-Q3_K_L.gguf 文件目录下面执行如下命令:
chcp 65001

set PATH=D:\llama-b4658-bin-win-avx512-x64;%PATH%

llama-server -m DeepSeek-R1-Distill-Qwen-1.5B-Q3_K_L.gguf --port 8080

使用浏览器打开 http://127.0.0.1:8080/ 地址进行测试,

复制代码
curl --request POST \
    --url http://localhost:8080/completion \
    --header "Content-Type: application/json" \
    --data '{"prompt": "

Building a website can be done in 10 simple steps:","n_predict": 128}'

相关推荐
Zhijun.li@Studio9 天前
【LLaMA-Factory 实战系列】二、WebUI 篇 - Qwen2.5-VL 多模态模型 LoRA 微调保姆级教程
人工智能·自然语言处理·llama·多模态大模型
1213410 天前
LLM:重构数字世界的“智能操作系统”
gpt·aigc·ai编程·llama·gpu算力
冷雨夜中漫步17 天前
Java中如何使用lambda表达式分类groupby
java·开发语言·windows·llama
扫地的小何尚19 天前
全新NVIDIA Llama Nemotron Nano视觉语言模型在OCR基准测试中准确率夺冠
c++·人工智能·语言模型·机器人·ocr·llama·gpu
CFAteam19 天前
DeepSeek AI功能演示:如何生成Verilog脚本
人工智能·ai·fpga开发·llama
Tadas-Gao21 天前
从碳基羊驼到硅基LLaMA:开源大模型家族的生物隐喻与技术进化全景
人工智能·机器学习·大模型·llm·llama
Run_Clover22 天前
llama-factory微调大模型环境配置避坑总结
llama
ss27322 天前
Llama 4开源项目多维分析研究
llama
深科文库23 天前
构建 MCP 服务器:第 2 部分 — 使用资源模板扩展资源
人工智能·chatgpt·llama
晨尘光1 个月前
在Windows下编译出llama_cpp_python的DLL后,在虚拟环境中使用方法
python·llama