mac llama_index agent算术式子计算示例

本文通过简单数学计算,示例llama_index使用agent解决复杂任务过程。

假设mac本地llama_index环境已安装,过程参考

mac测试ollama llamaindex-CSDN博客

测试mac笔记本内存8G,所以使用较小LLM完成示例。

ollama pull qwen3:1.7b

qwen3:1.7b能力较弱,需要prompt明确要求使用agent工具,遵守计算前后顺序。

prompt示例如下

"使用agent工具计算,遵守计算的先后顺序, 20 + (2 x 3) * 4?"

程序示例如下

复制代码
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from llama_index.core import Settings
from llama_index.llms.ollama import Ollama

Settings.embed_model = OllamaEmbedding(model_name="yxl/m3e:latest")  
Settings.llm = Ollama(model="qwen3:1.7b", request_timeout=360) 

# 定义数学计算工具
def multiply(a: float, b: float) -> float:
    """Multiply two numbers and returns the product"""
    return a * b

multiply_tool = FunctionTool.from_defaults(fn=multiply)

def add(a: float, b: float) -> float:
    """Add two numbers and returns the sum"""
    return a + b

add_tool = FunctionTool.from_defaults(fn=add)

# 实例化 ReActAgent
agent = ReActAgent.from_tools(
    [multiply_tool, add_tool], verbose=True
)

# 测试代理
response = agent.chat("使用agent工具计算,遵守计算的先后顺序, 20 + (2 x 3) * 4?")
print(response)

如下所示,llama_index将示例式子计算过程分解为agent工具的调用过程。

首先是红色部分,调用multiply完成2*3=6。

然后是棕色部分,调用multiply完成6*4=24。

最后是紫色部分,调用add完成20+24=44。

> Running step 91dcc552-f7b2-4cc3-9af1-cf07812cc8b8. Step input: 请使用agent工具计算,遵守计算的先后顺序, 20 + (2 x 3) * 4?

Thought: <think>

Okay, let's see. The user wants to calculate 20 + (2 x 3) * 4 using the agent tool. Hmm, first I need to break down the expression according to the order of operations. Parentheses come first, so I should calculate 2 x 3 first. That's 6. Then multiply by 4, which gives 24. Now add that to 20. So 20 + 24 equals 44. Wait, but the tools available are multiply and add. Let me check the tools again. The multiply tool takes two numbers, and the add tool adds two numbers. So I need to do the multiplication first. Let me do the steps: first multiply 2 and 3, then multiply the result by 4, then add 20. So the steps would be: multiply 2 and 3 to get 6, then multiply by 4 to get 24, then add 20. So the final answer should be 44. I need to use the tools in the correct order. Let me use the multiply tool first for 2 and 3, then multiply the result by 4, then add 20. Let's see how that works.

</think>

Thought: I need to calculate 20 + (2 x 3) * 4 using the available tools. First, multiply 2 and 3, then multiply the result by 4, and finally add 20.
Action: multiply
Action Input: {"a": 2, "b": 3}
Observation: 6

Thought: Now multiply the result (6) by 4.
Action: multiply
Action Input: {"a": 6, "b": 4}
Observation: 24

Thought: Add 24 to 20.
Action: add
Action Input: {'a': 24, 'b': 20}
Observation: 44

> Running step ab11a064-bdde-42df-9fcf-3aa409e18eab. Step input: None

Thought: I can answer without using any more tools. I'll use the user's language to answer

Answer: 44

44

对于更复杂任务和能力更强的LLM,处理过程是类似的。

更强的LLM能更有效的将复杂问题分解为多个agent调用过程,通过agent协同解决复杂问题。

reference


mac测试ollama llamaindex

https://blog.csdn.net/liliang199/article/details/149542926

相关推荐
laplace01231 分钟前
PPO到GRPO自己话总结
人工智能·python·大模型·agent·rag
编程大师哥2 分钟前
JavaScript 和 Python 哪个更适合初学者?
开发语言·javascript·python
aiguangyuan3 分钟前
从零构建字符级RNN:用PyTorch实现莎士比亚风格文本生成
人工智能·python·nlp
Yiyaoshujuku12 分钟前
疾病的发病率、发病人数、患病率、患病人数、死亡率、死亡人数查询网站及数据库
数据库·人工智能·算法
larance16 分钟前
机器学习分类和设计原则
人工智能·机器学习·分类
boring_11118 分钟前
AI时代本质的思考
网络·人工智能·智能路由器
红尘炼丹客19 分钟前
论文《LLM-in-Sandbox Elicits General Agentic Intelligence》解析
人工智能·深度学习·大模型·llm-in-sandbox
梦幻精灵_cq19 分钟前
《双征color》诗解——梦幻精灵_cq对终端渲染的数据结构设计模型式拓展
数据结构·python
青主创享阁22 分钟前
玄晶引擎:基于多模态大模型的全流程AI自动化架构设计与落地实践
运维·人工智能·自动化
世优科技虚拟人25 分钟前
从吉祥物“复活”到AI实训:世优科技数字人赋能智慧校园升级
人工智能