Leetcode 1035. Uncrossed Lines

Problem

You are given two integer arrays nums1 and nums2. We write the integers of nums1 and nums2 (in the order they are given) on two separate horizontal lines.

We may draw connecting lines: a straight line connecting two numbers nums1[i] and nums2[j] such that:

  • nums1[i] == nums2[j], and
  • the line we draw does not intersect any other connecting (non-horizontal) line.

Note that a connecting line cannot intersect even at the endpoints (i.e., each number can only belong to one connecting line).

Return the maximum number of connecting lines we can draw in this way.

Algorithm

Dynamic Programming (DP): same as Longest Common Subsequence (LCS).

  • If s1[i] != s2[j]:
    F ( i , j ) = max ⁡ ( F ( i − 1 , j ) , F ( i , j − 1 ) ) F(i, j) = \max\left( F(i-1, j), F(i, j-1) \right) F(i,j)=max(F(i−1,j),F(i,j−1))

  • If s1[i] == s2[j]:
    F ( i , j ) = F ( i − 1 , j − 1 ) + 1 F(i, j) = F(i-1, j-1) + 1 F(i,j)=F(i−1,j−1)+1

Code

python3 复制代码
class Solution:
    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
        l1, l2 = len(nums1) + 1, len(nums2) + 1
        dp = [[0] * l2 for _ in range(l1)] 

        for i in range(1, l1):
            for j in range(1, l2):
                if nums1[i-1] == nums2[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        
        return dp[l1-1][l2-1]
相关推荐
CoovallyAIHub11 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
NAGNIP12 小时前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo12 小时前
半开区间和开区间的两个二分模版
算法
moonlifesudo12 小时前
300:最长递增子序列
算法
CoovallyAIHub17 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub18 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v2 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工2 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农2 天前
【React用到的一些算法】游标和栈
算法·react.js