目录
[1 调用库](#1 调用库)
[2 生成数据集](#2 生成数据集)
[3 格式转换](#3 格式转换)
[4 检查数据是否正确生成及转换](#4 检查数据是否正确生成及转换)
[5 模型训练及测试](#5 模型训练及测试)
[6 拟合情况](#6 拟合情况)
[6.2 欠拟合](#6.2 欠拟合)
[6.3 过拟合](#6.3 过拟合)
[6.3.1 权重衰退](#6.3.1 权重衰退)
[6.3.2 Dropout](#6.3.2 Dropout)
过拟合、欠拟合理论部分详见2https://blog.csdn.net/weixin_45728280/article/details/153703200?spm=1011.2415.3001.5331
1 调用库
import math import numpy as np import torch from torch import nn #PyTorch神经网络模块 from d2l import torch as d2l #课程的PyTorch工具模块
2 生成数据集
max_degree = 20 # 多项式的最大阶数 n_train, n_test = 100, 100 # 训练和测试数据集大小 true_w = np.zeros(max_degree) # 分配大量的空间 true_w[0:4] = np.array([5, 1.2, -3.4, 5.6]) features = np.random.normal(size=(n_train + n_test, 1)) np.random.shuffle(features)#生成200个随机输入x服从标准正态分布,打乱顺序防止训练集和测试集有序 poly_features = np.power(features, np.arange(max_degree).reshape(1, -1)) for i in range(max_degree): poly_features[:, i] /= math.gamma(i + 1) # gamma(n)=(n-1)! # labels的维度:(n_train+n_test,) labels = np.dot(poly_features, true_w) labels += np.random.normal(scale=0.1, size=labels.shape)
3 格式转换
# NumPy ndarray转换为tensor true_w, features, poly_features, labels = [torch.tensor(x, dtype= torch.float32) for x in [true_w, features, poly_features, labels]]把 NumPy的数组(
ndarray)批量转换为PyTorch的Tensor类型。
4 检查数据是否正确生成及转换
features[:2], poly_features[:2, :], labels[:2](1)features:原始输入特征,代码中为从索引0取到索引1;
(2)ploy_features:
,代码中为取0、1行所有列;
(3)labels:真实标签y,代码中为从索引0取到索引1。
5 模型训练及测试
def evaluate_loss(net, data_iter, loss): #@save """评估给定数据集上模型的损失""" metric = d2l.Accumulator(2) # 损失的总和,样本数量 for X, y in data_iter: out = net(X) y = y.reshape(out.shape) #将y的形状与out一样,便于后续运算 l = loss(out, y) metric.add(l.sum(), l.numel()) return metric[0] / metric[1](1)data_inter:数据迭代器
(2)metric.add:分别包含损失值之和metric[0],样本数metric[1]。
定义训练函数:
def train(train_features, test_features, train_labels, test_labels, num_epochs=400): loss = nn.MSELoss(reduction='none') input_shape = train_features.shape[-1] # 不设置偏置,因为我们已经在多项式中实现了它 net = nn.Sequential(nn.Linear(input_shape, 1, bias=False)) batch_size = min(10, train_labels.shape[0]) #取10和训练标签的小值做为批量大小 train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)), batch_size) test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)), batch_size, is_train=False) trainer = torch.optim.SGD(net.parameters(), lr=0.01) animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test']) for epoch in range(num_epochs): d2l.train_epoch_ch3(net, train_iter, loss, trainer) if epoch == 0 or (epoch + 1) % 20 == 0: animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss))) print('weight:', net[0].weight.data.numpy())(1)MSELoss:使用MSE损失函数,详见5.4.2https://blog.csdn.net/weixin_45728280/article/details/153778299?spm=1011.2415.3001.5331
(2)nn.Linear(input_shape, 1, bias=False):构造线性模型,(输入X的维度,输出只有1个,无偏置)
(3)is_train=False:打乱原数据顺序关
(4)torch.optim.SGD:随机梯度优化器
(5)net.parameters():包含所有需要优化的参数
(6)lr:学习率
(7)animator = d2l.Animator:训练过程中动态地更新并绘制曲线图
(8)d2l.train_epoch_ch3
遍历数据集,对数据集进行前向计算,计算损失,反向传播,更新权重。
(9)epoch == 0 or (epoch + 1) % 20 == 0
第一个epoch或每隔20个epoch计算一次损失。
6 拟合情况
6.1正常拟合
# 从多项式特征中选择前4个维度,即1,x,x^2/2!,x^3/3! train(poly_features[:n_train, :4], poly_features[n_train:, :4], labels[:n_train], labels[n_train:])
6.2 欠拟合
# 从多项式特征中选择前2个维度,即1和x train(poly_features[:n_train, :2], poly_features[n_train:, :2], labels[:n_train], labels[n_train:])
6.3 过拟合
# 从多项式特征中选取所有维度 train(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:], num_epochs=1500)
6.3.1 权重衰退
防止归拟合的方法,理论详见3.5.1https://blog.csdn.net/weixin_45728280/article/details/153703200?spm=1011.2415.3001.5331
代码示例:
%matplotlib inline import torch from torch import nn from d2l import torch as d2l n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5 true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05 #生成训练数据 train_data = d2l.synthetic_data(true_w, true_b, n_train) #生成数据加载器 train_iter = d2l.load_array(train_data, batch_size) #生成测试数据与加载器 test_data = d2l.synthetic_data(true_w, true_b, n_test) test_iter = d2l.load_array(test_data, batch_size, is_train=False)(1)输入200维,输出1维,高维小样本问题用以演示过拟合;
(2)true_w, true_b
真实权重w为0.01,偏置为0.05
(3)is_train=False
不打乱数据
#随机初始化模型参数 def init_params(): w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True) b = torch.zeros(1, requires_grad=True) return [w, b](1)torch.normal(0, 1, size=(num_inputs, 1))
从标准正态中采样,均值0、标准差1,生成大小为(num_inputs, 1)的张量
#定义L2正则化惩罚 def l2_penalty(w): return torch.sum(w.pow(2)) / 2
#定义训练代码实现 def train(lambd): w, b = init_params() net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss num_epochs, lr = 100, 0.003 animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch in range(num_epochs): for X, y in train_iter: # 增加了L2范数惩罚项, # 广播机制使l2_penalty(w)成为一个长度为batch_size的向量 l = loss(net(X), y) + lambd * l2_penalty(w) l.sum().backward() d2l.sgd([w, b], lr, batch_size) if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) print('w的L2范数是:', torch.norm(w).item())(1)d2l.squared_loss
均方差损失函数MSE
(2)l.sum().backward()
对损失求梯度
(3)d2l.sgd()
使用随机梯度下降更新参数
#忽视正则化直接训练 train(lambd=0)
#使用权重衰减 train(lambd=3)
简介实现
def train_concise(wd): net = nn.Sequential(nn.Linear(num_inputs, 1)) for param in net.parameters(): param.data.normal_() loss = nn.MSELoss(reduction='none') num_epochs, lr = 100, 0.003 # 偏置参数没有衰减 trainer = torch.optim.SGD([ {"params":net[0].weight,'weight_decay': wd}, {"params":net[0].bias}], lr=lr) animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch in range(num_epochs): for X, y in train_iter: trainer.zero_grad() l = loss(net(X), y) l.mean().backward() trainer.step() if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) print('w的L2范数:', net[0].weight.norm().item()) train_concise(0) train_concise(3)
6.3.2 Dropout
import torch from torch import nn from d2l import torch as d2l #定义函数 def dropout_layer(X, dropout): assert 0 <= dropout <= 1 # 在本情况中,所有元素都被丢弃 if dropout == 1: return torch.zeros_like(X) # 在本情况中,所有元素都被保留 if dropout == 0: return X #生成随机掩码 mask = (torch.rand(X.shape) > dropout).float() return mask * X / (1.0 - dropout)(1)定义函数
(2)生成随机掩码mask
(3)应用掩码做缩放修正
#定义模型参数 num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
pythondropout1, dropout2 = 0.2, 0.5 class Net(nn.Module): def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True): super(Net, self).__init__() self.num_inputs = num_inputs self.training = is_training #定义各层 self.lin1 = nn.Linear(num_inputs, num_hiddens1) self.lin2 = nn.Linear(num_hiddens1, num_hiddens2) self.lin3 = nn.Linear(num_hiddens2, num_outputs) self.relu = nn.ReLU() #前向传播 def forward(self, X): H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs)))) # 只有在训练模型时才使用dropout if self.training == True: # 在第一个全连接层之后添加一个dropout层 H1 = dropout_layer(H1, dropout1) H2 = self.relu(self.lin2(H1)) if self.training == True: # 在第二个全连接层之后添加一个dropout层 H2 = dropout_layer(H2, dropout2) out = self.lin3(H2) return out net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)(1)class Net(nn.Module)
(2)前向传播
python#训练与测试 num_epochs, lr, batch_size = 10, 0.5, 256 loss = nn.CrossEntropyLoss(reduction='none') train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) trainer = torch.optim.SGD(net.parameters(), lr=lr) #调用训练函数 d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
简洁实现:
pythonnet = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), # 在第一个全连接层之后添加一个dropout层 nn.Dropout(dropout1), nn.Linear(256, 256), nn.ReLU(), # 在第二个全连接层之后添加一个dropout层 nn.Dropout(dropout2), nn.Linear(256, 10)) def init_weights(m): if type(m) == nn.Linear: nn.init.normal_(m.weight, std=0.01) net.apply(init_weights); trainer = torch.optim.SGD(net.parameters(), lr=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)




















