打造智能语料库:通过Coco AI Server 实现 Notion 笔记 RAG 检索功能

本文将详细介绍如何将 Notion 作为语料库,部署 Coco Server 的 RAG(Retrieval-Augmented Generation)功能。我们将使用 Easysearch 作为语料库存储 Notion 素材,并通过 ollama 进行 LLM 推理。

1. 环境准备

1.1 启动 Easysearch

首先,启动 Easysearch 作为语料库,用于存储 Notion 的素材。

1.2 启动 ollama

接下来,启动 ollama,用于进行 LLM 推理。

1.3 启动 CoCo Server

启动 CoCo Server,默认端口为 9000。

bash 复制代码
OLLAMA_MODEL=deepseek-r1:1.5b ES_PASSWORD=45ff432a5428ade77c7b   ./coco-mac-arm64

2. CoCo App 连接与登录

2.1 连接 CoCo Server

通过 CoCo App 连接 Server,并输入相关信息。

2.2 使用 GitHub 登录

登录时选择使用 GitHub 账号进行认证。

2.3 获取 OAuth 回调信息

登录成功后,系统会重定向并返回 OAuth 回调信息。我们需要抓取以下信息,后续将使用该 token 换取访问 CoCo Server AI 的 key:

复制代码
coco://oauth_callback?code=cupibub55o1cfqbveps0q804ai6aj14in3u91xjhvuk8s7ixirjsq2j9mmyyeut91nmgjwz0b494ngpk&request_id=eb94762b-f054-4710-9c6cf20889d3&provider=coco-cloud

3. 认证流程

3.1 获取临时 Token

首先,访问以下 URL 获取临时 Token:

bash 复制代码
http://localhost:9000/sso/login/github?provider=coco-cloud&product=coco&request_id=dd9825e1-ebd3-4c84-9e3f-7ccb0421c508

该请求将返回一个临时 Token。

3.2 换取 Access Token

使用上一步获取的临时 Token,通过以下命令换取 Access Token:

bash 复制代码
curl -H'X-API-TOKEN: <token>' "http://localhost:9000/auth/request_access_token?request_id=dd9825e1-ebd3-4c84-9e3f-7ccb0421c508"

返回的 Token 即为所需的 Access Token。

3.3 使用 Postman 获取 Token

在 Postman 中执行上述步骤,获取 access_token 和过期时间。

4. 使用 Python 脚本自动化认证流程

以下 Python 脚本可用于自动化解析 OAuth 回调信息并获取 Access Token:

python 复制代码
import requests

def parse_oauth_callback(url):
    query_params = {param.split('=')[0]: param.split('=')[1] for param in url.split('?')[1].split('&')}
    code = query_params.get("code")
    request_id = query_params.get("request_id")
    return code, request_id

def request_access_token(code, base_url, request_id):
    url = f"{base_url}/auth/request_access_token?request_id={request_id}"
    headers = {"X-API-TOKEN": code}
    response = requests.get(url, headers=headers)
    return response.json()

# 示例输入
oauth_callback_url = """
coco://oauth_callback?code=cupibub55o1cfqbveps0q804ai6aj151wu4in3u91xjhvuk8s7ixirjsq2j9mmyyeut91nmgjwz0b494ngpk&request_id=eb94762b-f054-4710-9c6a-0cf2088729d3&provider=coco-cloud
"""
base_url = "http://localhost:9000"

# 解析 code 和 request_id
code, request_id = parse_oauth_callback(oauth_callback_url)

# 发送请求
token_response = request_access_token(code, base_url, request_id)
print(token_response)

5. 查看用户信息

使用获取的 access_key 可以查看用户信息:

python 复制代码
import requests

url = "http://localhost:9000/account/profile"

payload = {}
headers = {
  'X-API-TOKEN': 'cupichb55o1cfqbveq90zwomyxs791ul3esbxxt480c8dzgvdtjtvmcnsld4a5v0wvx9l9ofcf1'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

6. 注册 Notion Connector

以下 Python 脚本用于注册 Notion Connector:

python 复制代码
import requests
import json

def update_connector(base_url, api_token, connector_name, data):
    url = f"{base_url}/connector/{connector_name}?replace=true"
    headers = {
        "X-API-TOKEN": api_token,
        "Content-Type": "application/json"
    }
    response = requests.put(url, headers=headers, data=json.dumps(data))
    return response.json()

base_url = "http://localhost:9000"
api_token = "<token>"

notion_data = {
    "name": "Notion Docs Connector",
    "description": "Fetch the docs metadata for notion.",
    "icon": "/assets/connector/notion/icon.png",
    "category": "website",
    "tags": ["docs", "notion", "web"],
    "url": "http://coco.rs/connectors/notion",
    "assets": {
        "icons": {
            "default": "/assets/connector/notion/icon.png",
            "web_page": "/assets/connector/notion/icon.png",
            "database": "/assets/connector/notion/database.png",
            "page": "/assets/connector/notion/page.png"
        }
    }
}

response_notion = update_connector(base_url, api_token, "notion", notion_data)
print(response_notion)

在Easysearch中看到创建Notion的Connector:

7. 配置 Notion Connector

7.1 修改 Notion 配置文件

修改 Notion 配置文件以激活检索功能:

7.2 申请 Notion API Key

在 Notion 官网申请 API Key:Notion API Key

7.3 配置权限与展示 API Key

配置完成后,设置权限并展示 API Key:

7.4 配置 Notion Connector

使用以下 Python 脚本配置 Notion Connector:

python 复制代码
import requests
import json

def create_datasource(base_url, api_token, data):
    url = f"{base_url}/datasource/"
    headers = {
        "X-API-TOKEN": api_token,
        "Content-Type": "application/json"
    }
    response = requests.post(url, headers=headers, data=json.dumps(data))
    return response.json()

# 示例输入
base_url = "http://localhost:9000"
api_token = "<api-key>"

datasource_data = {
    "name": "My Notion",
    "type": "connector",
    "connector": {
        "id": "notion",
        "config": {
            "token": "<notion token>"
        }
    }
}

# 发送 POST 请求
response = create_datasource(base_url, api_token, datasource_data)
print(response)

在Easysearch中会创建coco相关的索引:

7.5 设置 Notion 集成

在 Notion 中设置集成,以便 CoCo Server 能够搜索到相关内容:

8. 验证检索功能

在 coco_document 中可以看到notion的文档:

8.1 查看 CoCo Server 日志

在 CoCo Server 日志中确认 Notion 检索功能已启用:

8.2 在搜索栏检索

最后,您可以在搜索栏中检索到 Notion 笔记内容:

至此,您已成功将 Notion 作为语料库部署到 CoCo Server 的 RAG 功能中。


我们详细介绍了如何将 Notion 作为语料库,部署 Coco Server 的 RAG 功能。从环境准备到认证流程,再到配置 Notion Connector 和验证检索功能,每一步都进行了详细的说明和操作演示。希望本文能帮助您顺利实现 Notion 与 Coco Server 的集成,提升您的知识管理和检索效率。

相关推荐
AI_567810 小时前
AI无人机如何让安全隐患无处遁形
人工智能·无人机
机器之心10 小时前
DeepSeek强势回归,开源IMO金牌级数学模型
人工智能·openai
机器之心10 小时前
华为放出「准万亿级MoE推理」大招,两大杀手级优化技术直接开源
人工智能·openai
大力财经10 小时前
零跑Lafa5正式上市 以“五大硬核实力”开启品牌个性化新篇章
人工智能
ECT-OS-JiuHuaShan10 小时前
否定之否定的辩证法,谁会不承认?但又有多少人说的透?
开发语言·人工智能·数学建模·生活·学习方法·量子计算·拓扑学
软件开发技术深度爱好者10 小时前
基于多个大模型自己建造一个AI智能助手(增强版)
人工智能
骥龙10 小时前
4.12、隐私保护机器学习:联邦学习在安全数据协作中的应用
人工智能·安全·网络安全
天硕国产存储技术站11 小时前
DualPLP 双重掉电保护赋能 天硕工业级SSD筑牢关键领域安全存储方案
大数据·人工智能·安全·固态硬盘
腾讯云开发者11 小时前
AI独孤九剑:AI没有场景,无法落地?不存在的。
人工智能
光影少年11 小时前
node.js和nest.js做智能体开发需要会哪些东西
开发语言·javascript·人工智能·node.js