机器学习基本篇

1 基本概念

机器学习,分为 回归,分类,聚类,降维

有监督学习 回归,分类, 有特征,有标签,进行训练,然后对新数据进行预测

无监督学习 聚类,降维。

题目越多,训练越好,

2 基本流程

数据预处理------ 模型训练与评估

可以优化为 获取数据------数据预处理------EDA 分析------特征工程------模型训练------可解释性分析

2.0 数据获取

利用 kaggle, 天池 等平台的 开源 数据,

2.1 预处理

目的:

  1. 让数据更符合逻辑
  2. 让数据更容易计算
    借助函数实现变换 or 运算
认识数据

常用 pandas 包,是 python 中一个强大的数据分析和处理库。

其可以

  1. 数据处理,对数据进行 清洗,转换,合并,分组等操作,处理缺失的和重复的数据。
  2. 数据读取和写入, 如 CSV 格式,excel, JSON, SQL 等
  3. 对数据进行时间序列分析,移动窗口统计等操作

** 部分常用 API **

import pandas as pd

读取数据

df = pd.read_csv('data.csv')

查看数据

df.head()

显示数据集形状. (几行几列)

df.shape

查看数据集信息。 (特征的种类和标签)

Data.info

空值的数量

mean 均值

std 标准差

min 最小值

25% 第 25 百分位数

max 最大值

unique 唯一值数量

top 出现频率最高的值

freq 最高频率出现次数

显示数据集的统计特征,

df.decribe()

相关推荐
程序员大雄学编程26 分钟前
「深度学习笔记4」深度学习优化算法完全指南:从梯度下降到Adam的实战详解
笔记·深度学习·算法·机器学习
德育处主任2 小时前
地表最强“慧眼”,给大模型戴上智能眼镜 PaddleOCR-VL
人工智能·机器学习·图像识别
i.ajls3 小时前
强化学习入门-1-CartPole-v1(DQN)
机器学习·强化学习·dqn
Victory_orsh3 小时前
“自然搞懂”深度学习系列(基于Pytorch架构)——01初入茅庐
人工智能·pytorch·python·深度学习·算法·机器学习
Ro Jace6 小时前
模式识别与机器学习课程笔记(11):深度学习
笔记·深度学习·机器学习
碱化钾6 小时前
Lipschitz连续及其常量
人工智能·机器学习
蜉蝣之翼❉7 小时前
图像处理之浓度(AI 调研)
图像处理·人工智能·机器学习
云青黛8 小时前
轮廓系数(一个异型簇的分类标准)
人工智能·算法·机器学习
云青黛8 小时前
肘部法找k
人工智能·算法·机器学习·聚类
Hs_QY_FX8 小时前
Python 分类模型评估:从理论到实战(以信用卡欺诈检测为例)
人工智能·python·机器学习·数据挖掘·多分类评估