深度集成DeepSeek大模型:WebSocket流式聊天实现

目录

5分钟快速接入DeepSeek大模型:WebSocket实时聊天指南

创建应用

  1. 访问DeepSeek官网

    • 前往 DeepSeek官网
    • 如果还没有账号,需要先注册一个。
  2. 进入API开放平台

    • 点击右上角的"API 开放平台"按钮,进入后台管理页面。
    • 你可以看到默认赠送的10元免费额度。
  3. 创建API Key

    • 点击"API keys",进入Key管理页面。
    • 创建一个新的API Key,并确保保存好这个Key,因为一旦离开页面就无法再次查看。

开发后端代码 (Python/Node.js)

推荐使用Python或Node.js编写后台代码。下面以Python为例进行说明。

  1. 安装OpenAI库

    shell 复制代码
    pip3 install openai
  2. 引入OpenAI并创建DeepSeek客户端实例

    python 复制代码
    from openai import OpenAI
    
    client = OpenAI(api_key="替换为你的key", base_url="https://api.deepseek.com")
  3. 发送请求

    python 复制代码
    response = client.chat.completions.create(
        model="deepseek-chat",
        messages=[
            {"role": "user", "content": "详细介绍一下你自己"},
        ],
        stream=False
    )
    print(response.choices[0].message.content)

    输出结果如下:

  4. 流式输出结果

    将请求参数 stream 设置为 True 即可实现流式输出。

    python 复制代码
    response = client.chat.completions.create(
        model="deepseek-chat",
        messages=[
            {"role": "user", "content": "详细介绍一下你自己"},
        ],
        stream=True
    )
    for chunk in response:
        print(chunk.choices[0].delta.content, end='', flush=True)
  5. 接口封装

    将功能封装为WebSocket接口,实现实时聊天。

    python 复制代码
    import asyncio
    import json
    from websockets import serve
    from openai import OpenAI
    
    client = OpenAI(api_key="替换为你的key", base_url="https://api.deepseek.com")
    
    async def chat_handler(websocket):
        async for message in websocket:
            data = json.loads(message)
            user_input = data.get('user_input', '')
            history = data.get('history', [])
    
            messages = [
                {"role": "system", "content": "You are a helpful assistant"}
            ]
            messages.extend(history)
            messages.append({"role": "user", "content": user_input})
    
            response = client.chat.completions.create(
                model="deepseek-chat",
                messages=messages,
                stream=True
            )
    
            for chunk in response:
                content = chunk.choices[0].delta.content
                if content:
                    await websocket.send(json.dumps({'content': content}, ensure_ascii=False))
    
    async def main():
        async with serve(chat_handler, "localhost", 8765):
            await asyncio.Future()  # Run forever
    
    if __name__ == "__main__":
        asyncio.run(main())

    使用Postman测试接口:

结语

通过以上步骤,你可以在短短5分钟内完成与DeepSeek大模型的集成,并实现一个实时聊天应用。WebSocket技术使得聊天内容可以流式传输,提升用户体验。希望这篇指南对你有所帮助,让你的项目更加高效和强大!

前端开发教程构建高效智能对话前端:基于Ant Design X 的deepseek对话应用

源码下载地址

相关推荐
星期天要睡觉16 小时前
深度学习——基于ResNet18迁移学习的图像分类模型
人工智能·python·分类·迁移学习
小钱c716 小时前
Python使用 pandas操作Excel文件并新增列数据
python·excel·pandas
AI数据皮皮侠16 小时前
中国博物馆数据
大数据·人工智能·python·深度学习·机器学习
数据智能老司机17 小时前
使用 OpenAI Agents SDK 构建智能体——记忆与知识
llm·openai·agent
数据智能老司机17 小时前
使用 OpenAI Agents SDK 构建智能体——代理工具与 MCP
llm·openai·agent
wu_jing_sheng017 小时前
Python中使用HTTP 206状态码实现大文件下载的完整指南
开发语言·前端·python
程序员大雄学编程17 小时前
「用Python来学微积分」2. 函数图像的变换
python·数学·微积分
Q264336502318 小时前
【有源码】基于Python与Spark的火锅店数据可视化分析系统-基于机器学习的火锅店综合竞争力评估与可视化分析-基于用户画像聚类的火锅店市场细分与可视化研究
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
unicrom_深圳市由你创科技18 小时前
工业上位机,用Python+Qt还是C#+WPF?
python·qt·c#
njsgcs18 小时前
json转excel python pd
python·json·excel·pd