基于暗通道先验的图像去雾算法解析与实现

一、算法背景

何凯明团队于2009年提出的暗通道先验去雾算法《single image haze removal using dark channel prior》,通过统计发现:在无雾图像的局部区域中,至少存在一个颜色通道的像素值趋近于零。这一发现为图像去雾提供了重要的理论依据,其数学模型可表示为:

I ( x ) = J ( x ) t ( x ) + A ( 1 − t ( x ) ) I(x) = J(x)t(x) + A(1 - t(x)) I(x)=J(x)t(x)+A(1−t(x))

其中:

  • I ( x ) I(x) I(x):观测到的有雾图像
  • J ( x ) J(x) J(x):待恢复的无雾图像
  • t ( x ) t(x) t(x):透射率
  • A A A:全局大气光值

二、算法原理

1. 暗通道计算

通过取RGB三通道最小值并进行形态学腐蚀操作:

python 复制代码
def dark_channel(img, size=15):
    r, g, b = cv2.split(img)
    min_img = cv2.min(r, cv2.min(g, b))
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
    return cv2.erode(min_img, kernel)

2. 大气光估计

选取图像中最亮像素的0.1%作为大气光值:

python 复制代码
def get_atmo(img, percent=0.001):
    mean_perpix = np.mean(img, axis=2).reshape(-1)
    mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
    return np.mean(mean_topper)

3. 透射率估计

t ( x ) = 1 − ω ⋅ d a r k _ c h a n n e l ( I A ) t(x) = 1 - \omega \cdot dark\_channel\left(\frac{I}{A}\right) t(x)=1−ω⋅dark_channel(AI)

python 复制代码
def get_trans(img, atom, w=0.95):
    x = img / atom
    return 1 - w * dark_channel(x, 7)

4. 引导滤波优化

使用灰度图作为引导图像进行透射率优化:

python 复制代码
# 引导滤波
def guided_filter(p, i, r, e):
    """
    :param p: input image
    :param i: guidance image
    :param r: radius
    :param e: regularization
    :return: filtering output q
    """
    # 1
    mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
    mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
    corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
    corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
    # 2
    var_I = corr_I - mean_I * mean_I
    cov_Ip = corr_Ip - mean_I * mean_p
    # 3
    a = cov_Ip / (var_I + e)
    b = mean_p - a * mean_I
    # 4
    mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
    mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
    # 5
    q = mean_a * i + mean_b
    return q

三、完整实现代码

python 复制代码
import cv2
import numpy as np
import os


# 计算雾化图像的暗通道
def dark_channel(img, size=15):
    r, g, b = cv2.split(img)
    min_img = cv2.min(r, cv2.min(g, b))  # 取最暗通道
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
    dc_img = cv2.erode(min_img, kernel)
    return dc_img


# 估计全局大气光值
def get_atmo(img, percent=0.001):
    mean_perpix = np.mean(img, axis=2).reshape(-1)
    mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
    return np.mean(mean_topper)


# 估算透射率图
def get_trans(img, atom, w=0.95):
    x = img / atom
    t = 1 - w * dark_channel(x, 15)
    return t


# 引导滤波
def guided_filter(p, i, r, e):
    """
    :param p: input image
    :param i: guidance image
    :param r: radius
    :param e: regularization
    :return: filtering output q
    """
    # 1
    mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
    mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
    corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
    corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
    # 2
    var_I = corr_I - mean_I * mean_I
    cov_Ip = corr_Ip - mean_I * mean_p
    # 3
    a = cov_Ip / (var_I + e)
    b = mean_p - a * mean_I
    # 4
    mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
    mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
    # 5
    q = mean_a * i + mean_b
    return q


def dehaze(im):
    img = im.astype('float64') / 255
    img_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY).astype('float64') / 255
    atom = get_atmo(img)
    trans = get_trans(img, atom)
    trans_guided = guided_filter(trans, img_gray, 20, 0.0001)
    trans_guided = cv2.max(trans_guided, 0.25)
    result = np.empty_like(img)
    for i in range(3):
        result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
    return result * 255


if __name__ == '__main__':
    image_path= 'images/img.png'
    im = cv2.imread(image_path)
    img = im.astype('float64') / 255
    img_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY).astype('float64') / 255
    atom = get_atmo(img)
    trans = get_trans(img, atom)
    trans_guided = guided_filter(trans, img_gray, 10, 0.0001)
    trans_guided = cv2.max(trans_guided, 0.25)
    result = np.empty_like(img)
    for i in range(3):
        result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
    cv2.imwrite('images/img.png', result * 255)
相关推荐
CoovallyAIHub1 分钟前
AAAI 2026这篇杰出论文说了什么?用LLM给CLIP换了个“聪明大脑”
深度学习·算法·计算机视觉
迎仔2 分钟前
05-AI与网络安全
人工智能·安全·web安全
Aric_Jones4 分钟前
后台文章发布页添加 AI 自动生成摘要功能
人工智能
9呀9 分钟前
【ros2】OccupancyGrid消息里的resolution
人工智能·机器人
DuHz11 分钟前
通过超宽带信号估计位置——论文精读
论文阅读·人工智能·机器学习·自动驾驶·汽车
静听松涛13312 分钟前
大语言模型长上下文技术突破:如何处理超长文本的注意力机制与架构图解
人工智能·语言模型·架构
Physicist in Geophy.13 分钟前
一维波动方程(从变分法角度)
线性代数·算法·机器学习
我送炭你添花13 分钟前
电子世界的奇妙冒险:从一个电阻开始(系列目录)
人工智能·单片机·嵌入式硬件·fpga开发
数据智能老司机14 分钟前
用于构建多智能体系统的智能体架构模式——可解释性与合规性的智能体模式
人工智能·llm·agent
数据智能老司机14 分钟前
用于构建多智能体系统的智能体架构模式——人类—智能体交互模式
人工智能·llm·agent