Docker安装分布式vLLM

Docker安装分布式vLLM

1 介绍

vLLM是一个快速且易于使用的LLM推理和服务库,适合用于生产环境。单主机部署会遇到显存不足的问题,因此需要分布式部署。

分布式安装方法

复制代码
https://docs.vllm.ai/en/latest/serving/distributed_serving.html

2 安装方法

⚠️ 注意:前期一定要把docker环境、运行时和GPU安装好。

CUDA Version: 12.4

vllm:v0.7.2

2.1 下载镜像

复制代码
# 下载镜像,镜像比较大
docker pull vllm/vllm-openai:v0.7.2

下载分布式部署的脚本

复制代码
https://github.com/vllm-project/vllm/blob/main/examples/online_serving/run_cluster.sh

run_cluster.sh文件

复制代码
#!/bin/bash

# Check for minimum number of required arguments
if [ $# -lt 4 ]; then
    echo "Usage: $0 docker_image head_node_address --head|--worker path_to_hf_home [additional_args...]"
    exit 1
fi

# Assign the first three arguments and shift them away
DOCKER_IMAGE="$1"
HEAD_NODE_ADDRESS="$2"
NODE_TYPE="$3"  # Should be --head or --worker
PATH_TO_HF_HOME="$4"
shift 4

# Additional arguments are passed directly to the Docker command
ADDITIONAL_ARGS=("$@")

# Validate node type
if [ "${NODE_TYPE}" != "--head" ] && [ "${NODE_TYPE}" != "--worker" ]; then
    echo "Error: Node type must be --head or --worker"
    exit 1
fi

# Define a function to cleanup on EXIT signal
cleanup() {
    docker stop node
    docker rm node
}
trap cleanup EXIT

# Command setup for head or worker node
RAY_START_CMD="ray start --block"
if [ "${NODE_TYPE}" == "--head" ]; then
    RAY_START_CMD+=" --head --port=6379"
else
    RAY_START_CMD+=" --address=${HEAD_NODE_ADDRESS}:6379"
fi

# Run the docker command with the user specified parameters and additional arguments
docker run \
    --entrypoint /bin/bash \
    --network host \
    --name node \
    --shm-size 10.24g \
    --gpus all \
    -v "${PATH_TO_HF_HOME}:/root/.cache/huggingface" \
    "${ADDITIONAL_ARGS[@]}" \
    "${DOCKER_IMAGE}" -c "${RAY_START_CMD}"

2.2 创建容器

两台主机的IP如下,主节点宿主机IP:192.168.108.100,工作节点宿主机IP:192.168.108.101。

主节点(head节点)运行分布式vLLM脚本

官网的说明

复制代码
# ip_of_head_node:主节点容器所在宿主机的IP地址
# /path/to/the/huggingface/home/in/this/node: 映射到到容器中的路径
# ip_of_this_node:当前节点所在宿主机的IP地址
# --head:表示主节点
bash run_cluster.sh \
                vllm/vllm-openai \
                ip_of_head_node \
                --head \
                /path/to/the/huggingface/home/in/this/node \
                -e VLLM_HOST_IP=ip_of_this_node

本机执行

复制代码
bash run_cluster.sh \
    vllm/vllm-openai:v0.7.2 \
    192.168.108.100 \
    --head \
    /home/vllm \
    -e VLLM_HOST_IP=192.168.108.100 \
    > nohup.log 2>&1 &

工作节点(worker节点)运行分布式vLLM脚本

官网的说明

复制代码
# ip_of_head_node:主节点容器所在宿主机的IP地址
# /path/to/the/huggingface/home/in/this/node: 映射到到容器中的路径
# ip_of_this_node:当前节点所在宿主机的IP地址
# --worker:表示工作节点
bash run_cluster.sh \
                vllm/vllm-openai \
                ip_of_head_node \
                --worker \
                /path/to/the/huggingface/home/in/this/node \
                -e VLLM_HOST_IP=ip_of_this_node

本机执行

复制代码
bash run_cluster.sh \
    vllm/vllm-openai:v0.7.2 \
    192.168.108.100 \
    --worker \
    /home/vllm \
    -e VLLM_HOST_IP192.168.108.101 \
    > nohup.log 2>&1 &

查看集群的信息

复制代码
# 进入容器
docker exec -it node /bin/bash

# 查看集群信息
ray status
# 返回值中有GPU数量、CPU配置和内存大小等
======== Autoscaler status: 2025-02-13 20:18:13.886242 ========
Node status
---------------------------------------------------------------
Active:
 1 node_89c804d654976b3c606850c461e8dc5c6366de5e0ccdb360fcaa1b1c
 1 node_4b794efd101bc393da41f0a45bd72eeb3fb78e8e507d72b5fdfb4c1b
Pending:
 (no pending nodes)
Recent failures:
 (no failures)

Resources
---------------------------------------------------------------
Usage:
 0.0/128.0 CPU
 0.0/4.0 GPU
 0B/20 GiB memory
 0B/19.46GiB object_store_memory

Demands:
 (no resource demands)

3 安装模型

⚠️ 本地有4张GPU卡。

官网说明

复制代码
# 启动模型服务,可根据情况设置模型参数
# /path/to/the/model/in/the/container:模型路径
# tensor-parallel-size:张量并行数量,模型层内拆分后并行计算;
# pipeline-parallel-size:管道并行数量,模型不同层拆分后并行计算,在单个显存不够时可以设置此参数
vllm serve /path/to/the/model/in/the/container \
     --tensor-parallel-size 8 \
     --pipeline-parallel-size 2

本机执行

将下载好的Qwen2.5-7B-Instruct模型,放在"/home/vllm"目录下

复制代码
# 进入节点,主节点和工作节点都可以
docker exec -it node /bin/bash

# 执行命令参数
nohup vllm serve /root/.cache/huggingface/Qwen2.5-7B-Instruct \
    --served-model-name qwen2.5-7b \
    --tensor-parallel-size 2 \
    --pipeline-parallel-size 2 \
    > nohup.log 2>&1 &

在宿主机上调用参数

复制代码
curl http://localhost:8000/v1/chat/completions \
-X POST \
-H "Content-Type: application/json" \
-d '{
    "model": "qwen2.5-7b",
    "messages": [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "介绍一下中国,不少于10000字"}
    ],
    "stream": true
}'
相关推荐
2501_941881401 天前
Kubernetes 容器集群资源调度与弹性扩容高可用架构在互联网业务实战经验总结
云原生·容器·kubernetes
究極の法則に通じた野犬1 天前
k8s设计理念-k8s中哪些服务要部署成StatefulSet哪些部署成Deployment
云原生·容器·kubernetes
wuxingge1 天前
k8s集群误删node节点,怎么添加回去
云原生·容器·kubernetes
贝锐1 天前
Docker部署Teemii本地漫画库,并通过花生壳内网穿透实现远程访问
docker
g***B7381 天前
后端在分布式中的服务配置
分布式
n***i951 天前
后端在分布式缓存中的一致性哈希
分布式·缓存·哈希算法
O***p6041 天前
后端在分布式中的服务治理
分布式
观测云1 天前
Kubernetes CRD 方式配置容器日志采集最佳实践
容器·kubernetes·日志分析
i***22071 天前
springboot整合libreoffice(两种方式,使用本地和远程的libreoffice);docker中同时部署应用和libreoffice
spring boot·后端·docker
羑悻的小杀马特1 天前
轻量跨云·掌控无界:Portainer CE + cpolar 让远程容器运维像点外卖一样简单——免复杂配置,安全直达对应集群
运维·网络·安全·docker·cpolar