计算机视觉-尺度不变区域

一、尺度不变性

1.1 尺度不变性

找到一个函数,实现尺度的选择特性。

1.2 高斯偏导模版求边缘
1.3 高斯二阶导

用二阶过零点检测边缘

高斯二阶导有两个参数:方差和窗宽(给定方差可以算出窗宽)

当图像与二阶导高斯滤波核能匹配的时候,能产生一个极大值

准备一堆模版上去卷积,看看哪个能产生最大响应,但是随着信号变化发生了信号衰减

高斯偏导核

信号的总面积:随着方差的变大,会越来越小(权值求和不是1)?

解决:所以乘以σ,消去后进行补偿

对于拉普拉斯乘以

下图中的信号应该选择σ=8的高斯模版

二、高斯二阶导

要有最大响应

信号宽度与零平面垂直,卷积结果越大(面积越大)越合适

零平面的圆的方程,圆的半径就是尺度

三、不同的尺度去卷积

变换高斯二阶导的核(选择不同的σ去卷积),响应最大的点(σ=4.8左右),

每一个尺度有一个图像

看具体的一个像素点在图像中的变化

每三个尺度进行比较,只和上下尺度进行比较,找出极值(绘画出很多圆)?

解决:非最大化抑制(在所有里面最大)

四、Harris和Laplacian结合

五、SIFT特征

详细讲解:

https://medium.com/@deepanshut041/introduction-to-sift-scale-invariant-feature-transform-65d7f3a72d40

DOG 两个高斯差分

图片在不同尺度空间里的极值就是图片中的特征点

相关推荐
辛勤的程序猿2 分钟前
改进的mamba核心块—Hybrid SS2D Block(适用于视觉)
人工智能·深度学习·yolo
serve the people5 分钟前
如何区分什么场景下用机器学习,什么场景下用深度学习
人工智能·深度学习·机器学习
xjxijd11 分钟前
Serverless 3.0 混合架构:容器 + 事件驱动,AI 服务弹性伸缩响应快 3 倍
人工智能·架构·serverless
csdn_aspnet15 分钟前
如何用爬虫、机器学习识别方式屏蔽恶意广告
人工智能·爬虫·机器学习
weixin_4577600020 分钟前
RNN(循环神经网络)原理
人工智能·rnn·深度学习
代码AI弗森35 分钟前
意图识别深度原理解析:从向量空间到语义流形
人工智能
姚华军38 分钟前
RagFlow、Dify部署时,端口如何调整成指定端口
人工智能·dify·ragflow
老蒋新思维41 分钟前
创客匠人峰会新视角:AI 时代知识变现的 “组织化转型”—— 从个人 IP 到 “AI+IP” 组织的增长革命
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
JoannaJuanCV1 小时前
自动驾驶—CARLA仿真(0)报错记录
人工智能·机器学习·自动驾驶
小白狮ww1 小时前
Matlab 教程:基于 RFUAV 系统使用 Matlab 处理无人机信号
开发语言·人工智能·深度学习·机器学习·matlab·无人机·rfuav