【赵渝强老师】Spark RDD的缓存机制

Spark RDD通过persist方法或cache方法可以将计算结果的缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD才会被缓存在计算节点的内存中并供后面重用。下面是persist方法或cache方法的函数定义:

scala 复制代码
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)
def cache(): this.type = persist()
视频讲解如下
【赵渝强老师】Spark RDD的缓存机制

通过函数的定义发现,cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark在object StorageLevel中定义了缓存的存储级别。下面是在StorageLevel中的定义的缓存级别。

scala 复制代码
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2=new StorageLevel(true, true, false, false, 2)
valOFF_HEAP = new StorageLevel(true, true, true, false, 1)

需要说明的是,使用RDD的缓存机制,数据可能丢失;或者会由于内存的不足而造成数据被删除。可以通过使用RDD的检查点机制了保证缓存的容错,即使缓存丢失了也能保证计算的正确执行。

下面是使用RDD缓存机制的一个示例。这里使用RDD读取一个大的文件,该文件中包含918843条记录。通过Spark Web Console可以对比出在不使用缓存和使用缓存时,执行效率的差别。

(1)读取一个大文件。

scala 复制代码
scala> val rdd1 = sc.textFile("/root/temp/sales")

(2)触发一个计算,这里没有使用缓存。

scala 复制代码
scala> rdd1.count

(3)调用cache方法标识该RDD可以被缓存。

scala 复制代码
scala> rdd1.cache

(4)第二次触发计算,计算完成后会将结果缓存。

scala 复制代码
scala> rdd1.count

(5)第三次触发计算,这里会直接从之前的缓存中获取结果。

scala 复制代码
scala> rdd1.count

(6)访问Spark的Web Console观察这三次count计算的执行时间,可以看成最后一次count计算只耗费了98ms,如下图所示。

相关推荐
mykyle1 小时前
Elasticsearch-ik分析器
大数据·elasticsearch·jenkins
weixin_lynhgworld2 小时前
淘宝扭蛋机小程序系统开发:重塑电商互动模式
大数据·小程序
daixin88483 小时前
什么是缓存雪崩?缓存击穿?缓存穿透?分别如何解决?什么是缓存预热?
java·开发语言·redis·缓存
daixin88485 小时前
Redis过期数据的删除策略是什么?有哪些?
数据库·redis·缓存
RPA+AI十二工作室5 小时前
影刀RPA_Temu关键词取数_源码解读
大数据·自动化·源码·rpa·影刀
Sui_Network5 小时前
探索 Sui 上 BTCfi 的各类资产
大数据·人工智能·科技·游戏·区块链
EmpressBoost6 小时前
谷粒商城170缓存序列化报错
java·spring·缓存
大数据张老师7 小时前
用 AI 做数据分析:从“数字”里挖“规律”
大数据·人工智能
幻灭行度8 小时前
通过redis_exporter监控redis cluster
数据库·redis·缓存
博闻录8 小时前
以 “有机” 重构增长:云集从电商平台到健康生活社区的跃迁
大数据·重构·生活