【赵渝强老师】Spark RDD的缓存机制

Spark RDD通过persist方法或cache方法可以将计算结果的缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD才会被缓存在计算节点的内存中并供后面重用。下面是persist方法或cache方法的函数定义:

scala 复制代码
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)
def cache(): this.type = persist()
视频讲解如下
【赵渝强老师】Spark RDD的缓存机制

通过函数的定义发现,cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark在object StorageLevel中定义了缓存的存储级别。下面是在StorageLevel中的定义的缓存级别。

scala 复制代码
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2=new StorageLevel(true, true, false, false, 2)
valOFF_HEAP = new StorageLevel(true, true, true, false, 1)

需要说明的是,使用RDD的缓存机制,数据可能丢失;或者会由于内存的不足而造成数据被删除。可以通过使用RDD的检查点机制了保证缓存的容错,即使缓存丢失了也能保证计算的正确执行。

下面是使用RDD缓存机制的一个示例。这里使用RDD读取一个大的文件,该文件中包含918843条记录。通过Spark Web Console可以对比出在不使用缓存和使用缓存时,执行效率的差别。

(1)读取一个大文件。

scala 复制代码
scala> val rdd1 = sc.textFile("/root/temp/sales")

(2)触发一个计算,这里没有使用缓存。

scala 复制代码
scala> rdd1.count

(3)调用cache方法标识该RDD可以被缓存。

scala 复制代码
scala> rdd1.cache

(4)第二次触发计算,计算完成后会将结果缓存。

scala 复制代码
scala> rdd1.count

(5)第三次触发计算,这里会直接从之前的缓存中获取结果。

scala 复制代码
scala> rdd1.count

(6)访问Spark的Web Console观察这三次count计算的执行时间,可以看成最后一次count计算只耗费了98ms,如下图所示。

相关推荐
indexsunny1 小时前
互联网大厂Java求职面试实战:Spring Boot微服务与Redis缓存场景解析
java·spring boot·redis·缓存·微服务·消息队列·电商
九河云7 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
起名时在学Aiifox7 小时前
Vue 3 响应式缓存策略:从页面状态追踪到智能数据管理
前端·vue.js·缓存
一心赚狗粮的宇叔7 小时前
中级软件开发工程师2025年度总结
java·大数据·oracle·c#
盛世宏博北京7 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
ChineHe9 小时前
Redis数据类型篇002_详解Strings核心命令与存储结构
数据库·redis·缓存
DX_水位流量监测10 小时前
大坝安全监测之渗流渗压位移监测设备技术解析
大数据·运维·服务器·网络·人工智能·安全
面向Google编程10 小时前
Flink源码阅读:Netty通信
大数据·flink
九河云11 小时前
从“被动适配”到“主动重构”:企业数字化转型的底层逻辑
大数据·人工智能·安全·重构·数字化转型
ChineHe12 小时前
Redis数据类型篇001_数据类型梳理与选择指南
数据库·redis·缓存