【赵渝强老师】Spark RDD的缓存机制

Spark RDD通过persist方法或cache方法可以将计算结果的缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD才会被缓存在计算节点的内存中并供后面重用。下面是persist方法或cache方法的函数定义:

scala 复制代码
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)
def cache(): this.type = persist()
视频讲解如下
【赵渝强老师】Spark RDD的缓存机制

通过函数的定义发现,cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark在object StorageLevel中定义了缓存的存储级别。下面是在StorageLevel中的定义的缓存级别。

scala 复制代码
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2=new StorageLevel(true, true, false, false, 2)
valOFF_HEAP = new StorageLevel(true, true, true, false, 1)

需要说明的是,使用RDD的缓存机制,数据可能丢失;或者会由于内存的不足而造成数据被删除。可以通过使用RDD的检查点机制了保证缓存的容错,即使缓存丢失了也能保证计算的正确执行。

下面是使用RDD缓存机制的一个示例。这里使用RDD读取一个大的文件,该文件中包含918843条记录。通过Spark Web Console可以对比出在不使用缓存和使用缓存时,执行效率的差别。

(1)读取一个大文件。

scala 复制代码
scala> val rdd1 = sc.textFile("/root/temp/sales")

(2)触发一个计算,这里没有使用缓存。

scala 复制代码
scala> rdd1.count

(3)调用cache方法标识该RDD可以被缓存。

scala 复制代码
scala> rdd1.cache

(4)第二次触发计算,计算完成后会将结果缓存。

scala 复制代码
scala> rdd1.count

(5)第三次触发计算,这里会直接从之前的缓存中获取结果。

scala 复制代码
scala> rdd1.count

(6)访问Spark的Web Console观察这三次count计算的执行时间,可以看成最后一次count计算只耗费了98ms,如下图所示。

相关推荐
2301_793086875 小时前
Redis 04 Reactor
数据库·redis·缓存
还是大剑师兰特6 小时前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
189228048619 小时前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
武子康10 小时前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka
青鱼入云10 小时前
redis怎么做rehash的
redis·缓存
FFF-X10 小时前
Vue3 路由缓存实战:从基础到进阶的完整指南
vue.js·spring boot·缓存
CCF_NOI.11 小时前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变
杨荧12 小时前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python
数据智研13 小时前
【数据分享】上市公司创新韧性数据(2007-2023)
大数据·人工智能
辞--忧18 小时前
双十一美妆数据分析:洞察消费趋势与行业秘密
大数据