【赵渝强老师】Spark RDD的缓存机制

Spark RDD通过persist方法或cache方法可以将计算结果的缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD才会被缓存在计算节点的内存中并供后面重用。下面是persist方法或cache方法的函数定义:

scala 复制代码
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)
def cache(): this.type = persist()
视频讲解如下
【赵渝强老师】Spark RDD的缓存机制

通过函数的定义发现,cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark在object StorageLevel中定义了缓存的存储级别。下面是在StorageLevel中的定义的缓存级别。

scala 复制代码
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2=new StorageLevel(true, true, false, false, 2)
valOFF_HEAP = new StorageLevel(true, true, true, false, 1)

需要说明的是,使用RDD的缓存机制,数据可能丢失;或者会由于内存的不足而造成数据被删除。可以通过使用RDD的检查点机制了保证缓存的容错,即使缓存丢失了也能保证计算的正确执行。

下面是使用RDD缓存机制的一个示例。这里使用RDD读取一个大的文件,该文件中包含918843条记录。通过Spark Web Console可以对比出在不使用缓存和使用缓存时,执行效率的差别。

(1)读取一个大文件。

scala 复制代码
scala> val rdd1 = sc.textFile("/root/temp/sales")

(2)触发一个计算,这里没有使用缓存。

scala 复制代码
scala> rdd1.count

(3)调用cache方法标识该RDD可以被缓存。

scala 复制代码
scala> rdd1.cache

(4)第二次触发计算,计算完成后会将结果缓存。

scala 复制代码
scala> rdd1.count

(5)第三次触发计算,这里会直接从之前的缓存中获取结果。

scala 复制代码
scala> rdd1.count

(6)访问Spark的Web Console观察这三次count计算的执行时间,可以看成最后一次count计算只耗费了98ms,如下图所示。

相关推荐
迎風吹頭髮2 小时前
Linux内核架构浅谈49-Linux per-CPU页面缓存:热页与冷页的管理与调度优化
linux·缓存·架构
IT小哥哥呀2 小时前
电池制造行业数字化实施
大数据·制造·智能制造·数字化·mom·电池·信息化
Xi xi xi3 小时前
苏州唯理科技近期也正式发布了国内首款神经腕带产品
大数据·人工智能·经验分享·科技
码农多耕地呗3 小时前
力扣146.LRU缓存(哈希表缓存.映射+双向链表数据结构手搓.维护使用状况顺序)(java)
数据结构·leetcode·缓存
yumgpkpm3 小时前
华为鲲鹏 Aarch64 环境下多 Oracle 、mysql数据库汇聚到Cloudera CDP7.3操作指南
大数据·数据库·mysql·华为·oracle·kafka·cloudera
UMI赋能企业4 小时前
制造业流程自动化提升生产力的全面分析
大数据·人工智能
TDengine (老段)4 小时前
TDengine 数学函数 FLOOR 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
派可数据BI可视化7 小时前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
jiedaodezhuti7 小时前
Flink性能调优基石:资源配置与内存优化实践
大数据·flink
Lx3528 小时前
Flink窗口机制详解:如何处理无界数据流
大数据