数仓搭建(hive):DM搭建(数据集市层)

DM层 数据集市层 (Data Mart)

粒度上卷(Roll-up):

指的是沿着维度层次向上聚合汇总数据,从细粒度到粗粒度观察数据的操作。

示例

数仓的上一层DWS的是按日汇总

DM层基于DWS层主题日宽表上卷统计出按年,月,周的数据 >>用DWS层的宽表连接DWD层的时间维度表

创建DM层 : 建数据库>>建表

CREATE DATABASE if NOT EXISTS DM;

建表: 表结构和DWS层的表结构几乎一致, 只多了关于日期的维度字段

建表sql

CREATE TABLE dm.dm_sale(
   date_time string COMMENT '统计日期,不能用来分组统计' ,--记录哪一天干活
   time_type string COMMENT '统计时间维度:year、month、week、date(就是天day)',
   year_code string COMMENT '年code',
   year_month string COMMENT '年月',
   month_code string COMMENT '月份编码', 
   day_month_num string COMMENT '一月第几天', 
   dim_date_id string COMMENT '日期',
   year_week_name_cn string COMMENT '年中第几周',

   group_type string COMMENT '分组类型:store,trade_area,city,brand,min_class,mid_class,max_class,all',
   city_id string COMMENT '城市id',
   city_name string COMMENT '城市name',
   trade_area_id string COMMENT '商圈id',
   trade_area_name string COMMENT '商圈名称',
   store_id string COMMENT '店铺的id',
   store_name string COMMENT '店铺名称',
   brand_id string COMMENT '品牌id',
   brand_name string COMMENT '品牌名称',
   max_class_id string COMMENT '商品大类id',
   max_class_name string COMMENT '大类名称',
   mid_class_id string COMMENT '中类id', 
   mid_class_name string COMMENT '中类名称',
   min_class_id string COMMENT '小类id', 
   min_class_name string COMMENT '小类名称',
   --   =======统计=======
   sale_amt DECIMAL(38,2) COMMENT '销售收入',
   plat_amt DECIMAL(38,2) COMMENT '平台收入',
   deliver_sale_amt DECIMAL(38,2) COMMENT '配送成交额',
   mini_app_sale_amt DECIMAL(38,2) COMMENT '小程序成交额',
   android_sale_amt DECIMAL(38,2) COMMENT '安卓APP成交额',
   ios_sale_amt DECIMAL(38,2) COMMENT '苹果APP成交额',
   pcweb_sale_amt DECIMAL(38,2) COMMENT 'PC商城成交额',
   order_cnt BIGINT COMMENT '成交单量',
   eva_order_cnt BIGINT COMMENT '参评单量comment=>cmt',
   bad_eva_order_cnt BIGINT COMMENT '差评单量negtive-comment=>ncmt',
   deliver_order_cnt BIGINT COMMENT '配送单量',
   refund_order_cnt BIGINT COMMENT '退款单量',
   miniapp_order_cnt BIGINT COMMENT '小程序成交单量',
   android_order_cnt BIGINT COMMENT '安卓APP订单量',
   ios_order_cnt BIGINT COMMENT '苹果APP订单量',
   pcweb_order_cnt BIGINT COMMENT 'PC商城成交单量'
)
COMMENT '销售主题宽表' 
ROW format delimited fields terminated BY '\t' 
stored AS orc tblproperties ('orc.compress' = 'SNAPPY');

插入数据sql

WITH TEMP AS (
    SELECT
        D.year_code,
        D.year_month,
        D.month_code,
        D.day_month_num,
        D.dim_date_id,
        D.year_week_name_cn,
        city_id, city_name, trade_area_id, trade_area_name, store_id, store_name, brand_id, brand_name, max_class_id, max_class_name, mid_class_id, mid_class_name, min_class_id, min_class_name, sale_amt, plat_amt, deliver_sale_amt, mini_app_sale_amt, android_sale_amt, ios_sale_amt, pcweb_sale_amt, order_cnt, eva_order_cnt, bad_eva_order_cnt, deliver_order_cnt, refund_order_cnt, miniapp_order_cnt, android_order_cnt, ios_order_cnt, pcweb_order_cnt, dt
    FROM DWS.DWS_SALE_DAYCOUNT S
    INNER JOIN DWD.DIM_DATE D
    ON S.dt = D.date_code
)
INSERT overwrite table dm.dm_sale
SELECT
    CURRENT_DATE AS DATE_TIME,
    CASE
        WHEN dim_date_id IS NOT NULL THEN 'DATE'
        WHEN year_week_name_cn IS NOT NULL THEN 'WEEK'
        WHEN month_code IS NOT NULL THEN 'MONTH'
        WHEN year_code IS NOT NULL THEN 'YEAR'
    END AS TIME_TYPE,
    year_code,
    year_month,
    month_code,
    day_month_num,
    dim_date_id,
    year_week_name_cn,
    CASE
        WHEN T.store_id IS NOT NULL THEN '店铺'
        WHEN T.trade_area_id IS NOT NULL THEN '商圈'
        WHEN T.city_id IS NOT NULL THEN '城市'
        WHEN T.min_class_id IS NOT NULL THEN '小类'
        WHEN T.mid_class_id IS NOT NULL THEN '中类'
        WHEN T.max_class_id IS NOT NULL THEN '大类'
        WHEN T.brand_id IS NOT NULL THEN '品牌'
        ELSE '日期'
    END AS GROUP_TYPE,
    city_id,
    city_name,
    trade_area_ID,
    trade_area_name,
    store_id,
    store_name,
    brand_id,
    brand_name,
    max_class_id,
    max_class_name,
    mid_class_id,
    mid_class_name,
    min_class_id,
    min_class_name,
    SUM(sale_amt),
    SUM(plat_amt),
    SUM(deliver_sale_amt),
    SUM(mini_app_sale_amt),
    SUM(android_sale_amt),
    SUM(ios_sale_amt),
    SUM(pcweb_sale_amt),
    SUM(order_cnt),
    SUM(eva_order_cnt),
    SUM(bad_eva_order_cnt),
    SUM(deliver_order_cnt),
    SUM(refund_order_cnt),
    SUM(miniapp_order_cnt),
    SUM(android_order_cnt),
    SUM(ios_order_cnt),
    SUM(pcweb_order_cnt)
FROM TEMP T
GROUP BY
    -- 所有 GROUPING SETS 中出现的列都要包含在 GROUP BY 中
    day_month_num,
    dim_date_id,
    city_id, city_name, trade_area_id, trade_area_name, store_id, store_name, brand_id, brand_name, max_class_id, max_class_name, mid_class_id, mid_class_name, min_class_id, min_class_name,
    year_code,
    year_month,
    month_code,
    year_week_name_cn
GROUPING SETS (
    (day_month_num, dim_date_id),
    (day_month_num, dim_date_id, city_id, city_name),
    (day_month_num, dim_date_id, city_id, city_name, trade_area_id, trade_area_name),
    (day_month_num, dim_date_id, city_id, city_name, trade_area_id, trade_area_name, store_id, store_name),
    (day_month_num, dim_date_id, brand_id, brand_name),
    (day_month_num, dim_date_id, max_class_id, max_class_name),
    (day_month_num, dim_date_id, max_class_id, max_class_name, mid_class_name, mid_class_id),
    (day_month_num, dim_date_id, max_class_id, max_class_name, mid_class_name, mid_class_id, min_class_id, min_class_name),
    (year_week_name_cn),
    (year_week_name_cn, city_id, city_name),
    (year_week_name_cn, city_id, city_name, trade_area_id, trade_area_name),
    (year_week_name_cn, city_id, city_name, trade_area_id, trade_area_name, store_id, store_name),
    (year_week_name_cn, brand_id, brand_name),
    (year_week_name_cn, max_class_id, max_class_name),
    (year_week_name_cn, max_class_id, max_class_name, mid_class_name, mid_class_id),
    (year_week_name_cn, max_class_id, max_class_name, mid_class_name, mid_class_id, min_class_id, min_class_name),
    (year_month, month_code),
    (year_month, month_code, city_id, city_name),
    (year_month, month_code, city_id, city_name, trade_area_id, trade_area_name),
    (year_month, month_code, city_id, city_name, trade_area_id, trade_area_name, store_id, store_name),
    (year_month, month_code, brand_id, brand_name),
    (year_month, month_code, max_class_id, max_class_name),
    (year_month, month_code, max_class_id, max_class_name, mid_class_name, mid_class_id),
    (year_month, month_code, max_class_id, max_class_name, mid_class_name, mid_class_id, min_class_id, min_class_name),
    (year_code),
    (year_code, city_id, city_name),
    (year_code, city_id, city_name, trade_area_id, trade_area_name),
    (year_code, city_id, city_name, trade_area_id, trade_area_name, store_id, store_name),
    (year_code, brand_id, brand_name),
    (year_code, max_class_id, max_class_name),
    (year_code, max_class_id, max_class_name, mid_class_name, mid_class_id),
    (year_code, max_class_id, max_class_name, mid_class_name, mid_class_id, min_class_id, min_class_name)
);

插入sql分析

查询DWS层的宽表>>确认连接字段dt的数据格式

查询时间维度表>>找到和DWS层的宽表的连接字段数据格式一样的字段>>查找新维度的相应字段

select * from DWD.DIM_DATE

在with as临时表里面把用DWS层的宽表连接DWD层的时间维度表, 内连接,连接字段dt(日)

在临时表查询语句中把目标表新增的时间维度的字段添加进去

目标表

临时表

INSERT overwrite table dm.dm_sale 是hive中全量插入的语法

在查询语句中把目标表新增的列实现

group_type string COMMENT '分组类型:store,trade_area,city,brand,min_class,mid_class,max_class,all',

枚举类型>>case when

group by 分组后面跟除了指标字段及 group_type 的所有字段(维度字段)

用grouping sets 写出需要的维度组合

相关推荐
fruge3 分钟前
git上传 项目 把node_modules也上传至仓库了,在文件.gitignore 中忽略node_modules 依然不行
大数据·git·elasticsearch
python资深爱好者35 分钟前
什么容错性以及Spark Streaming如何保证容错性
大数据·分布式·spark
B站计算机毕业设计超人2 小时前
计算机毕业设计hadoop+spark旅游景点推荐 旅游推荐系统 旅游可视化 旅游爬虫 景区客流量预测 旅游大数据 大数据毕业设计
大数据·hadoop·爬虫·深度学习·机器学习·数据可视化·推荐算法
qiquandongkh2 小时前
2025年股指期货和股指期权合约交割的通知!
大数据·金融·区块链
Ray.19983 小时前
优化 Flink 消费 Kafka 数据的速度:实战指南
大数据·flink·kafka
D愿你归来仍是少年3 小时前
Python解析 Flink Job 依赖的checkpoint 路径
大数据·python·flink
说私域4 小时前
利用开源AI智能名片2+1链动模式S2B2C商城小程序构建企业私域流量池的策略与实践
大数据·人工智能·小程序·开源
yinbp5 小时前
bboss v7.3.5来袭!新增异地灾备机制和Kerberos认证机制,助力企业数据安全
大数据·elasticsearch·微服务·etl·restclient·bboss
Elastic 中国社区官方博客5 小时前
Elasticsearch 自动补全搜索 - autocomplete
大数据·数据库·elasticsearch·搜索引擎·全文检索
Elastic 中国社区官方博客10 小时前
Elasticsearch 混合搜索 - Hybrid Search
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型·全文检索